搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耐高温CrAlON基太阳能光谱选择性吸收涂层的制备与热稳定性

王晓波 李克伟 高丽娟 程旭东 蒋蓉

引用本文:
Citation:

耐高温CrAlON基太阳能光谱选择性吸收涂层的制备与热稳定性

王晓波, 李克伟, 高丽娟, 程旭东, 蒋蓉

Preparation and thermal stability of CrAlON based spectrally selective absorbing coatings

Wang Xiao-Bo, Li Ke-Wei, Gao Li-Juan, Cheng Xu-Dong, Jiang Rong
PDF
HTML
导出引用
  • 光谱选择性吸收涂层是太阳能光-热利用技术的核心部件, 直接决定着整个系统的转换效率, 为了提高涂层的选择吸收性和热稳定性, 本文提出以金属氮化物替代金属纳米颗粒, 构建纳米晶-非晶异质结构的思路, 并采用多弧离子镀制备了Cr/CrAlN/CrAlON/CrAlN/CrAlON/CrAlO多吸收层光谱选择性吸收涂层, 其吸收率达0.90, 发射率为0.15, 而且在500 ℃、大气条件下时效220 h后, 涂层的吸收率升至0.94, 发射率则降至0.10, 并且能够保持稳定1000 h以上. 微观组织分析表明, 高温时效处理后, 吸收层发生部分晶化形成了大量氮化物纳米颗粒, 增加了对太阳光的散射和吸收, 而CrAlO减反射层中的部分晶化形成了Al2O3和Cr2O3纳米颗粒, 这不仅可以保护内部涂层不被氧化, 而且Al2O3的形成可以增加太阳光的透过率, 减少涂层表面反射, 是多吸收层CrAlON基光谱选择性吸收涂层选择吸收性能提高的主要原因. 同时, 氮化物纳米颗粒被非晶基体均匀地分隔开来, 形成了纳米晶-非晶异质结构, 非晶在高温时效处理过程中只发生结构弛豫, 从而有效地抑制了高温条件下的原子扩散, 保证涂层中的纳米颗粒在高温下不发生明显团聚, 这是多吸收层CrAlON基涂层具有良好热稳定性的最主要原因. 这些研究结果对提高金属陶瓷光谱选择性吸收涂层的综合性能, 实现更高效率的太阳能光-热利用具有重大意义.
    Spectrally selective absorbing coating is the core component of the utilization of solar energy. The spectral properties of selectively absorbing coating directly determine the conversion efficiency of constructing solar power plants. To enhance the selective absorbability and thermal stability, we propose an idea that these metal particles are replaced with transition-metal nitrides, and then coated with periodic nanocrystalline-amorphous heterogeneous structures. Double-absorbing layer Cr/CrAlN/CrAlON/CrAlN/CrAlON/CrAlO solar selective absorbing coatings with a high solar absorptance of 0.90 and a relatively low emittance of 0.15 are obtained by the cathodic arc ion plating technique. After the coating is aged at 500 °C in air for 220 h, its absorptance increases to 0.94 and the emittance decreases to 0.10. More importantly, the coating exhibits an outstanding thermal stability with a selectivity of 0.94/0.11 even after being aged at 500 °C for 1000 h in air. The microstructure analysis indicates that the multilayer coating consists of aperiodic CrAlN and CrAlON layers in addition to the Cr and CrAlO layers. Through the long-term aging, a small number of AlN, CrN and Cr2N nanocrystallites are observed to be homogeneously embedded in the CrAlN and CrAlON amorphous matrices. The nanoparticles in the CrAlN and CrAlON layers can effectively scatter the incident light into a broadband wavelength range, increasing the optical path length in the absorbing layers, and thus resulting in a pronounced enhancement in the absorptivity. A handful of Cr2O3 and Al2O3 nanograins are observed to be embedded in the amorphous CrAlO antireflection layer, which can effectively reflect the solar infrared radiation and the thermal emittance from the substrate, and thus resulting in pretty low infrared emissivity. The good thermal stability is attributed to the excellent thermal stability of the dielectric amorphous matrices and the sluggish atomic diffusion in the nanoparticles, which could effectively slow down the inward diffusion of oxygen and avoid agglomerating the nanoparticles. These results are of great importance for enhancing the overall performance of cermet spectrally selective absorption coating and also for improving the conversion efficiency of solar energy photo-thermal utilization.
      通信作者: 李克伟, likewei@tyut.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金 (批准号: 52002159)和国家高技术研究发展计划 (批准号: 2009AA05Z440)资助的课题
      Corresponding author: Li Ke-Wei, likewei@tyut.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 52002159) and the National High Technology Research and Development Program of China (Grant No. 2009AA05Z440)
    [1]

    史月艳, 那鸿悦 2009 太阳光谱选择性吸收膜系设计、制备及测评 (第1版) (北京: 清华大学出版社) 第44−65页

    Shi Y Y, Na H Y 2009 Design, Preparation and Evaluation of Solar Spectrum Selective absorption Films (1st Ed.) (Beijing: Tsinghua University Press) pp44−65 (in Chinese)

    [2]

    Cao F, McEnaney K, Chen G, Ren Z F 2014 Energy Environ. Sci. 7 1615Google Scholar

    [3]

    Cao F, Kraemer D, Sun T Y, Lan Y C, Chen G, Ren Z F 2015 Adv. Energy Mater. 5 1401042Google Scholar

    [4]

    Wang X Y, Gao J H, Hu H B, Zhang H L, Liang L Y, Javaid K, Zhuge F, Cao H T, Wang L 2017 Nano Energy 37 232Google Scholar

    [5]

    Xue Y F, Wang C, Wang W W, Liu Y, Wu Y X, Ning Y P, Sun Y 2013 Sol. Energy 96 113Google Scholar

    [6]

    Cheng J S, Wang C, Wang W W, Du X K, Liu Y, Xue Y F, Wang T M, Chen B L 2013 Sol. Energy Mater. Sol. Cells 109 204Google Scholar

    [7]

    田广科, 苗树翻, 马天国, 范多旺 2015 太阳能 3 50Google Scholar

    Tian G K, Mi ao, Ma T G, Fan D W 2015 Sol. Energy 3 50Google Scholar

    [8]

    Ge J P, Zhang Q, Zhang T R, Yin Y D 2008 Angew. Chem. Int. Edit. 47 8924Google Scholar

    [9]

    Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P, Somorjai G A 2008 Nat. Mater. 8 126Google Scholar

    [10]

    Gao T, Jelle B P, Gustavsen A J 2013 Nanopart. Res. 15 1370Google Scholar

    [11]

    Cao A, Veser G 2009 Nat. Mater. 9 75Google Scholar

    [12]

    Kim T K, VanSaders B, Caldwell E, Shin S, Liu Z, Jin S, Chen R 2016 Sol. Energy 132 257Google Scholar

    [13]

    Liu H D, Wan Q, Xu Y R, luo C, Chen Y M, Fu D J, Ren F, Luo G, Cheng X D, Hu X J, Yang B 2015 Sol. Energy Mater. Sol. Cells 134 261Google Scholar

    [14]

    Wu L, Gao J H, Liu Z M, Liang L Y, Xia F, Cao H T 2013 Sol. Energy Mater. Sol. Cells 114 186Google Scholar

    [15]

    Du M, Hao L, Mi J, Lü F, Liu X P, Jiang L J, Wang S M 2011 Sol. Energy Mater. Sol. Cells 95 1193Google Scholar

    [16]

    Barshilia H C 2014 Sol. Energy Mater. Sol. Cells 130 322Google Scholar

    [17]

    Barshilia H C, Selvakumar N, Rajam K S, Biswas A 2008 Sol. Energy Mater. Sol. Cells 92 1425Google Scholar

    [18]

    Barshilia H C, Selvakumar N, Rajam K S 2007 J. Vac. Sci. Technol., A 25 383Google Scholar

    [19]

    史月艳, 那鸿悦 2009 太阳光谱选择性吸收膜系设计、制备及测评 (第1版) (北京: 清华大学出版社) 第67−147页

    Shi Y Y, Na H Y 2009 Design, Preparation and Evaluation of Solar Spectrum Selective absorption Films (1st Ed.) (Beijing: Tsinghua University Press) pp67−147(in Chinese)

    [20]

    Zou C W, Xie W, Shao L X 2016 Sol. Energy Mater. Sol. Cells 153 9Google Scholar

    [21]

    Liu H D, Fu T R, Duan M H, Wan Q, luo C, Chen Y M, Fu D J, Ren F, Li Q Y, Cheng X D, Yang B, Hu X J 2016 Sol. Energy Mater. Sol. Cells 157 108Google Scholar

    [22]

    Gong D Q, Liu H D, Luo G, Zhang P, Cheng X D, Yang B, Wang Y B, Min J, Wang W X, Chen S P, Cui Z Q, Li K W, Hu L F 2015 Sol. Energy Mater. Sol. Cells 136 167Google Scholar

    [23]

    Gammer C, Mangler C, Rentenberger C, Karnthaler H P 2010 Scr. Mater. 63 312Google Scholar

    [24]

    Gao X H, Guo Z M, Geng Q F, Ma P J, Wang A Q, Liu G 2016 Sol. Energy 140 199Google Scholar

    [25]

    van den Oetelaar L C A, Nooij O W, Oerlemans S, Denier van der Gon A W, Brongersma H H, Lefferts L, Roosenbrand A G, van Veen J A R 1998 J. Phys. Chem. B 102 3445Google Scholar

    [26]

    Malis O, Radu M, Mott D, Wanjala B, Luo J, Zhong C J 2009 Nanotechnology 20 245708Google Scholar

    [27]

    Liao H, Fisher A, Xu Z J 2015 Small 11 3221Google Scholar

    [28]

    Dean J A 1990 Mater. Manuf. Processes 5 687Google Scholar

    [29]

    Clark B G, Hattar K, Marshall M T, Chookajorn T, Boyce B L, Schuh C A 2016 JOM 68 1625Google Scholar

    [30]

    Han L L, Meng Q P, Wang D L, Zhu Y M, Wang J, Du X W, Stach E A, Xin H L 2016 Nat. Commun. 7 13335Google Scholar

    [31]

    Huolin L X, Selim A, Runzhe T, Arda G, Chong-Min W, Libor K, Eric A S, Lin-Wang W, Miquel S, Gabor A S, Haimei Z 2014 Nano Lett. 14 3203Google Scholar

    [32]

    Wang C M, Genc A, Cheng H, Pullan L, Baer D R, Bruemmer S M 2014 Sci. Rep. 4 3683Google Scholar

  • 图 1  多吸收层CrAlON基光谱选择性吸收涂层的结构示意图

    Fig. 1.  Schematic diagram of the multi-absorbing layer CrAlON-based solar selective absorbing coating.

    图 2  500 °C高温时效处理过程中多吸收层CrAlON基光谱选择性吸收涂层的反射光谱曲线

    Fig. 2.  Reflectance spectra of the multi-absorbing layer CrAlON-based solar selective absorbing coatings during the high temperature ageing treatment at 500 °C.

    图 3  大气条件下、500 ℃多吸收层CrAlON基光谱选择性吸收涂层不同时效时间后的GIXRD图谱

    Fig. 3.  GIXRD patterns of the multi-absorbing layer CrAlON-based solar selective absorbing coatings aged at 500 °C for different times in air.

    图 4  大气条件下、500 ℃时效220 h后多吸收层CrAlON基光谱选择性吸收涂层的TEM图 (a) 明场像; (b) 选区电子衍射图谱

    Fig. 4.  TEM images of the multi-absorbing layer CrAlON-based solar selective absorbing coating aged at 500 °C for 220 h in air: (a) Bright-field TEM image; (b) the corresponding selected area electron diffraction (SAED) pattern of the area denoted in Fig. (a)

    图 5  大气条件下、500 ℃时效220 h后多吸收层CrAlON基光谱选择性吸收涂层截面中Al, Cr, N和O元素的成分分布图和EDS线扫描图

    Fig. 5.  EDS maps and line scans of the distribution of Al, Cr, N, and O in the multi-absorbing layer CrAlON-based solar selective absorbing coating aged at 500 °C for 220 h in air.

    图 6  大气条件下、500 ℃时效220 h后多吸收层CrAlON基光谱选择性吸收涂层的TEM图 (a) 明场像; (b) CrAlO; (c) 外层CrAlON; (d) 外层CrAlN; (e) 内层CrAlON; (f) 内层CrAlN

    Fig. 6.  TEM images of the multi-absorbing layer CrAlON-based solar selective absorbing coating aged at 500 °C for 220 h in air: (a) The bright-field TEM image; (b) the CrAlO layer; (c) the outer CrAlON layer; (d) the outer CrAlN layer; (e) the inner CrAlON layer; (f) the inner CrAlN layer.

    图 7  大气条件下500 ℃时效220 h后多吸收层CrAlON基光谱选择性吸收涂层的HRTEM图 (a) CrAlO减反射层; (b) CrAlON层; (c) CrAlN层

    Fig. 7.  HRTEM images of the multi-absorbing layer CrAlON-based solar selective absorbing coating aged at 500 °C for 220 h in air: (a) CrAlO layer; (b) CrAlON layer; (c) CrAlN layer.

    图 8  大气条件下、500 ℃时效220和1000 h后多吸收层CrAlON基光谱选择性吸收涂层的表面形貌 (a), (b) 220 h; (c), (d) 1000 h

    Fig. 8.  Morphologies of the multi-absorbing layer CrAlON-based solar selective absorbing coatings aged at 500 °C for 220 and 1000 h in air: (a), (b) Surface morphologies of the coating aged for 220 h; (c), (d) surface morphologies of the coating aged for 1000 h.

    图 9  大气条件下、500 ℃时效220 h后多吸收层CrAlON基光谱选择性吸收涂层的AFM形貌

    Fig. 9.  AFM morphology of the multi-absorbing layer CrAlON-based solar selective absorbing coating after aged at 500 °C for 220 h in air.

    表 1  CrAlON基光谱选择性吸收涂层的制备工艺参数

    Table 1.  Deposition parameters of the CrAlON-based selective absorbing coatings.

    ParametersCurrent/AAr/sccmO2/sccmN2/sccmTime/ s
    Cr901300015 × 60
    CrAlN (Inner)6010003060
    CrAlON (Inner)60120103060
    CrAlN (Outer)6010003060
    CrAlON (Outer)60120103060
    CrAlO6001300120
    下载: 导出CSV

    表 2  500 ℃下时效不同时间后, 多吸收层CrAlON基光谱选择性吸收涂层的吸收率、发射率、选择吸收性α/ε和PC值

    Table 2.  Absorptance α, emittance ε, selectivity α/ε and PC values of the multi-absorbing layer CrAlON-based solar selective absorbing coatings aged at 500 °C.

    Aging parametersαεα/εPC
    As-deposited0.900.156
    Aged for 220 h0.940.109.4–0.06
    Aged for 1000 h0.940.109.4–0.07
    下载: 导出CSV

    表 3  高温时效处理220 h多吸收层CrAlON基光谱选择性吸收涂层表面大颗粒的EDS成分(单位: 原子百分比, %)

    Table 3.  EDS compositions of the macro droplets of CrAlON after aging at 500 °C for 220 h in air (in atomic percent, %).

    PositionAlCrON
    Site 127.2254.4615.742.58
    Site 217.4656.1920.755.61
    Site 325.3349.5421.363.78
    Average23.3453.3919.283.99
    下载: 导出CSV
  • [1]

    史月艳, 那鸿悦 2009 太阳光谱选择性吸收膜系设计、制备及测评 (第1版) (北京: 清华大学出版社) 第44−65页

    Shi Y Y, Na H Y 2009 Design, Preparation and Evaluation of Solar Spectrum Selective absorption Films (1st Ed.) (Beijing: Tsinghua University Press) pp44−65 (in Chinese)

    [2]

    Cao F, McEnaney K, Chen G, Ren Z F 2014 Energy Environ. Sci. 7 1615Google Scholar

    [3]

    Cao F, Kraemer D, Sun T Y, Lan Y C, Chen G, Ren Z F 2015 Adv. Energy Mater. 5 1401042Google Scholar

    [4]

    Wang X Y, Gao J H, Hu H B, Zhang H L, Liang L Y, Javaid K, Zhuge F, Cao H T, Wang L 2017 Nano Energy 37 232Google Scholar

    [5]

    Xue Y F, Wang C, Wang W W, Liu Y, Wu Y X, Ning Y P, Sun Y 2013 Sol. Energy 96 113Google Scholar

    [6]

    Cheng J S, Wang C, Wang W W, Du X K, Liu Y, Xue Y F, Wang T M, Chen B L 2013 Sol. Energy Mater. Sol. Cells 109 204Google Scholar

    [7]

    田广科, 苗树翻, 马天国, 范多旺 2015 太阳能 3 50Google Scholar

    Tian G K, Mi ao, Ma T G, Fan D W 2015 Sol. Energy 3 50Google Scholar

    [8]

    Ge J P, Zhang Q, Zhang T R, Yin Y D 2008 Angew. Chem. Int. Edit. 47 8924Google Scholar

    [9]

    Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P, Somorjai G A 2008 Nat. Mater. 8 126Google Scholar

    [10]

    Gao T, Jelle B P, Gustavsen A J 2013 Nanopart. Res. 15 1370Google Scholar

    [11]

    Cao A, Veser G 2009 Nat. Mater. 9 75Google Scholar

    [12]

    Kim T K, VanSaders B, Caldwell E, Shin S, Liu Z, Jin S, Chen R 2016 Sol. Energy 132 257Google Scholar

    [13]

    Liu H D, Wan Q, Xu Y R, luo C, Chen Y M, Fu D J, Ren F, Luo G, Cheng X D, Hu X J, Yang B 2015 Sol. Energy Mater. Sol. Cells 134 261Google Scholar

    [14]

    Wu L, Gao J H, Liu Z M, Liang L Y, Xia F, Cao H T 2013 Sol. Energy Mater. Sol. Cells 114 186Google Scholar

    [15]

    Du M, Hao L, Mi J, Lü F, Liu X P, Jiang L J, Wang S M 2011 Sol. Energy Mater. Sol. Cells 95 1193Google Scholar

    [16]

    Barshilia H C 2014 Sol. Energy Mater. Sol. Cells 130 322Google Scholar

    [17]

    Barshilia H C, Selvakumar N, Rajam K S, Biswas A 2008 Sol. Energy Mater. Sol. Cells 92 1425Google Scholar

    [18]

    Barshilia H C, Selvakumar N, Rajam K S 2007 J. Vac. Sci. Technol., A 25 383Google Scholar

    [19]

    史月艳, 那鸿悦 2009 太阳光谱选择性吸收膜系设计、制备及测评 (第1版) (北京: 清华大学出版社) 第67−147页

    Shi Y Y, Na H Y 2009 Design, Preparation and Evaluation of Solar Spectrum Selective absorption Films (1st Ed.) (Beijing: Tsinghua University Press) pp67−147(in Chinese)

    [20]

    Zou C W, Xie W, Shao L X 2016 Sol. Energy Mater. Sol. Cells 153 9Google Scholar

    [21]

    Liu H D, Fu T R, Duan M H, Wan Q, luo C, Chen Y M, Fu D J, Ren F, Li Q Y, Cheng X D, Yang B, Hu X J 2016 Sol. Energy Mater. Sol. Cells 157 108Google Scholar

    [22]

    Gong D Q, Liu H D, Luo G, Zhang P, Cheng X D, Yang B, Wang Y B, Min J, Wang W X, Chen S P, Cui Z Q, Li K W, Hu L F 2015 Sol. Energy Mater. Sol. Cells 136 167Google Scholar

    [23]

    Gammer C, Mangler C, Rentenberger C, Karnthaler H P 2010 Scr. Mater. 63 312Google Scholar

    [24]

    Gao X H, Guo Z M, Geng Q F, Ma P J, Wang A Q, Liu G 2016 Sol. Energy 140 199Google Scholar

    [25]

    van den Oetelaar L C A, Nooij O W, Oerlemans S, Denier van der Gon A W, Brongersma H H, Lefferts L, Roosenbrand A G, van Veen J A R 1998 J. Phys. Chem. B 102 3445Google Scholar

    [26]

    Malis O, Radu M, Mott D, Wanjala B, Luo J, Zhong C J 2009 Nanotechnology 20 245708Google Scholar

    [27]

    Liao H, Fisher A, Xu Z J 2015 Small 11 3221Google Scholar

    [28]

    Dean J A 1990 Mater. Manuf. Processes 5 687Google Scholar

    [29]

    Clark B G, Hattar K, Marshall M T, Chookajorn T, Boyce B L, Schuh C A 2016 JOM 68 1625Google Scholar

    [30]

    Han L L, Meng Q P, Wang D L, Zhu Y M, Wang J, Du X W, Stach E A, Xin H L 2016 Nat. Commun. 7 13335Google Scholar

    [31]

    Huolin L X, Selim A, Runzhe T, Arda G, Chong-Min W, Libor K, Eric A S, Lin-Wang W, Miquel S, Gabor A S, Haimei Z 2014 Nano Lett. 14 3203Google Scholar

    [32]

    Wang C M, Genc A, Cheng H, Pullan L, Baer D R, Bruemmer S M 2014 Sci. Rep. 4 3683Google Scholar

  • [1] 刘骏杭, 朱照照, 毕林竹, 王鹏举, 蔡建旺. 重金属缓冲层和覆盖层对TbFeCo超薄膜磁性及热稳定性的影响. 物理学报, 2023, 72(7): 077501. doi: 10.7498/aps.72.20222239
    [2] 康亚斌, 袁小朋, 王晓波, 李克伟, 宫殿清, 程旭东. 分层化金属陶瓷光热转换涂层的微结构构筑与热稳定性. 物理学报, 2023, 72(5): 057103. doi: 10.7498/aps.72.20221693
    [3] 刘娜, 王译, 李文波, 张丽艳, 何世坤, 赵建坤, 赵纪军. 外尔半金属WTe2/Ti异质结的热稳定性拉曼散射研究. 物理学报, 2022, 71(19): 197501. doi: 10.7498/aps.71.20220712
    [4] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [5] 卢顺顺, 张晋敏, 郭笑天, 高廷红, 田泽安, 何帆, 贺晓金, 吴宏仙, 谢泉. 碳纳米管包裹的硅纳米线复合结构的热稳定性研究. 物理学报, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [6] 刘俊池, 李洪文, 王建立, 刘欣悦, 马鑫雪. 基于最大熵估计Alpha谱缩放与平移量的温度与发射率分离算法. 物理学报, 2015, 64(17): 175205. doi: 10.7498/aps.64.175205
    [7] 鲁东, 金冬月, 张万荣, 张瑜洁, 付强, 胡瑞心, 高栋, 张卿远, 霍文娟, 周孟龙, 邵翔鹏. 新型宽温区高热稳定性微波功率SiGe 异质结双极晶体管. 物理学报, 2013, 62(10): 104401. doi: 10.7498/aps.62.104401
    [8] 周广宏, 潘旋, 朱雨富. BiFeO3/Ni81Fe19磁性双层膜中的交换偏置及其热稳定性研究. 物理学报, 2013, 62(9): 097501. doi: 10.7498/aps.62.097501
    [9] 张章, 熊贤仲, 乙姣姣, 李金富. Al-Ni-RE非晶合金的晶化行为和热稳定性. 物理学报, 2013, 62(13): 136401. doi: 10.7498/aps.62.136401
    [10] 金铭, 白明, 苗俊刚. 阵列型微波黑体的发射率分析. 物理学报, 2012, 61(16): 164211. doi: 10.7498/aps.61.164211
    [11] 张颖, 何智兵, 李萍, 闫建成. 硅掺杂辉光放电聚合物薄膜的热稳定性研究. 物理学报, 2011, 60(12): 126501. doi: 10.7498/aps.60.126501
    [12] 苏法刚, 梁静秋, 梁中翥, 朱万彬. 光辐射吸收材料表面形貌与吸收率关系研究. 物理学报, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [13] 闫建成, 何智兵, 阳志林, 陈志梅, 唐永建, 韦建军. 玻璃微球表面辉光等离子体聚合物涂层的热稳定性研究. 物理学报, 2010, 59(11): 8005-8009. doi: 10.7498/aps.59.8005
    [14] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性. 物理学报, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [15] 张旭东, 徐铁峰, 聂秋华, 戴世勋, 沈 祥, 陆龙君, 章向华. Er3+/Yb3+共掺碲硼硅酸盐玻璃的光谱性质和热稳定性研究. 物理学报, 2007, 56(3): 1758-1764. doi: 10.7498/aps.56.1758
    [16] 沈 祥, 聂秋华, 徐铁峰, 高 媛. Er3+/Yb3+共掺碲钨酸盐玻璃的光谱性质和热稳定性的研究. 物理学报, 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
    [17] 张端明, 李 莉, 李智华, 关 丽, 侯思普, 谭新玉. 靶材吸收率变化与烧蚀过程熔融前靶材温度分布. 物理学报, 2005, 54(3): 1283-1289. doi: 10.7498/aps.54.1283
    [18] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究. 物理学报, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [19] 杨慎东, 宁兆元, 黄峰, 程珊华, 叶超. a-C:F薄膜的热稳定性与光学带隙的关联. 物理学报, 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
    [20] 蔺秀川, 邵天敏. 利用集总参数法测量材料对激光的吸收率. 物理学报, 2001, 50(5): 856-859. doi: 10.7498/aps.50.856
计量
  • 文章访问数:  5309
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-04
  • 修回日期:  2020-08-31
  • 上网日期:  2021-01-03
  • 刊出日期:  2021-01-20

/

返回文章
返回