搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分层化金属陶瓷光热转换涂层的微结构构筑与热稳定性

康亚斌 袁小朋 王晓波 李克伟 宫殿清 程旭东

引用本文:
Citation:

分层化金属陶瓷光热转换涂层的微结构构筑与热稳定性

康亚斌, 袁小朋, 王晓波, 李克伟, 宫殿清, 程旭东

Microstructure building and thermal stability of cermet-based photothermal conversion coatings with layered structures

Kang Ya-Bin, Yuan Xiao-Peng, Wang Xiao-Bo, Li Ke-Wei, Gong Dian-Qing, Cheng Xu-Dong
PDF
HTML
导出引用
  • 针对金属陶瓷基光热转换涂层高温热稳定性不足的核心问题, 提出构筑吸光纳米颗粒分层化结构来替代传统金属陶瓷涂层中纳米颗粒随机分布的结构, 这不仅可以抑制高温下涂层中纳米颗粒的团聚和长大, 而且能够增强涂层与太阳光的交互作用, 达到热稳定性和选择吸收性能的同步提升. 基于此思想, 本文设计并制备了Cr/AlCrN/AlCrON/AlCrO多层金属陶瓷光热转换涂层, 对其微结构、光学性能和热稳定性进行了详细的研究. 研究结果表明, 沉积态涂层的吸收率达到了0.903, 发射率为0.183, 而且在500 ℃、大气环境下退火1000 h后, 涂层的吸收率竟提高至0.913, 发射率也仅有0.199, 表现出良好的光谱选择吸收性和优异的高温热稳定性. 微观组织分析发现, 在AlCrON吸收层内形成了AlN, Cr2N纳米颗粒嵌于非晶陶瓷电介质基体的稳定双相复合结构, 并且AlN, Cr2N纳米颗粒呈分层化规则排列. 时域有限差分(FDTD)模拟表明, 纳米粒子的分层化分布可以将光子囚禁在AlCrON层内, 从而增强太阳光和涂层的作用时间和强度, 有助于提升涂层对太阳光的吸收, 而且退火过程中纳米颗粒的长大会减小颗粒之间的间距, 使得涂层消光光谱红移, 能够更好地匹配太阳辐射谱, 同时这种特殊的结构能够有效地避免纳米颗粒之间的团聚, 从而实现对涂层选择吸收性能和热稳定性的双重调控.
    To enhance the thermal stability of cermet-based photothermal conversion coatings, the present paper proposes a novel strategy to replace the randomly distributed nanoparticles with layered structure. This kind of structure can not only suppress the agglomeration and rapid growth of nanoparticles, but also enhance the interaction between the absorber and sunlight. Thus, the thermal stability and selectivity can be simultaneously improved by this unique kind of structure. Then, a Cr/AlCrN/AlCrON/AlCrO multilayer cermet-based photothermal conversion coating is designed and fabricated by multi-arc ion plating. The microstructure, optical properties and thermal stability of the multilayer coating are studied in detail. The optical properties tests show that the absorptance and emittance of the as-deposited coating achieve 0.903 and 0.183, respectively. More importantly, after being annealed at 500 ℃ in air for 1000 h, the absorptance reaches 0.913 and the emittance arrives at 0.199, implying the enhanced selectivity and thermal stability, which are ascribed to the formation of nanolaminates, in which a series of alternating sublayers is observed in the AlCrON absorber. The nanolaminate is a two-phase composite structure composed of layered AlN and Cr2N nanoparticles distributed in amorphous dielectric matrix. According to the finite difference time domain (FDTD) simulations, this unique kind of microstructure can trap photons in the coating, which is beneficial to enhancing the interaction intensity and time between the sunlight and absorbing sublayer, and thus improving the absorption of sunlight. In addition, the reduction of particle spacing during annealing will lead to the red shift of extinction spectrum, which will better match the solar radiation spectrum. At the same time, this kind of structure can avoid the agglomeration of nanoparticles, which can simultaneously tune the optical properties and thermal stability.
      通信作者: 李克伟, likewei@tyut.edu.cn
    • 基金项目: 山西省自然科学基金(批准号: 202103021224063)、晋中学院“1331工程”重点创新团队项目 (批准号: jzxyjscxd202104)和国家自然科学基金(批准号: 52002159)资助的课题.
      Corresponding author: Li Ke-Wei, likewei@tyut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 202103021224063), the Key Innovation Team Project of “1331 Project” of Jinzhong University, China (Grant No. jzxyjscxd202104), and the National Natural Science Foundation of China (Grant No. 52002159).
    [1]

    Moon J, Lu D, VanSaders B, Kim T K, Kong S D, Jin S H, Chen R K, Liu Z W 2014 Nano Energy 8 238Google Scholar

    [2]

    Rebouta L, Sousa A, Andritschky M, Cerqueira F, Tavares C J, Santilli P, Pischow K 2015 Appl. Surf. Sci. 356 203Google Scholar

    [3]

    田广科, 苗树翻, 马天国, 范多旺 2015 太阳能 3 50Google Scholar

    Tian G K, Miao S F, Ma T G, Fan D W 2015 Sol. Energy 3 50Google Scholar

    [4]

    Meng J P, Guo R R, Li H, Zhao L M, Liu X P, Li Z 2018 Appl. Surf. Sci. 440 932Google Scholar

    [5]

    Tsegay M G, Gebretinsae H G, Sackey J, Arendse C J, Nuru Z Y 2021 Mater. Today Proc. 36 571Google Scholar

    [6]

    Gao J H, Wang X Y, Yang B, Tu C J, Liang L Y, Zhang H L, Zhuge F, Cao H T, Zou Y S, Yu K, Xia F, Han Y Y 2016 Adv. Mater. Interfaces 3 1600248Google Scholar

    [7]

    Barshilia H C 2014 Sol. Energy Mater. Sol. Cells 130 322Google Scholar

    [8]

    Wang X Y, Gao J H, Hu H B, Zhang H L, Liang L Y, Javaid K, Zhuge F, Cao H T, Wang L 2017 Nano Energy 37 232Google Scholar

    [9]

    Kotilainen M, Mizohata K, Honkanen M, Vuoristo P 2014 Sol. Energy Mater. Sol. Cells 120 462Google Scholar

    [10]

    Liu H D, Wan Q, Lin B Z, Wang L L, Yang X F, Wang R Y, Gong D Q, Wang Y B, Ren F, Chen Y M, Cheng X D, Yang B 2014 Sol. Energy Mater. Sol. Cells 122 226Google Scholar

    [11]

    Nuru Z Y, Motaung D E, Kaviyarasu K, Maaza M 2016 J. Alloys Compd. 664 161Google Scholar

    [12]

    Zheng L Q, Zhou F Y, Zhou Z D, Song X W, Dong G B, Wang M, Diao X G 2015 Sol. Energy 115 341Google Scholar

    [13]

    Gao T, Jelle B P, Gustavsen A 2013 J. Nanopart. Res. 15 1370Google Scholar

    [14]

    Ke C Z, Zhang X M, Guo W Y, Li Y J, Gong D Q, Cheng X D 2018 Vacuum 152 114Google Scholar

    [15]

    Zhang Q C 2001 J. Phys. D: Appl. Phys. 34 3113Google Scholar

    [16]

    史月艳, 那鸿悦 2009 太阳光谱选择性吸收膜系设计、制备及测评(第1版) (北京: 清华大学出版社)第55—56页

    Shi Y Y, Na H Y 2009 Design, Preparation and Evalvation of Solar Spectrunm Selective Absorption Films (1st Ed.) (Beijing: Tsinghua University Press) pp55–56 (in Chinese)

    [17]

    Du M, Hao L, Mi J, Lv F, Liu X P, Jiang L J, Wang S M 2011 Sol. Energy Mater. Sol. Cells 95 1193Google Scholar

    [18]

    Rechberger W, Hohenau A, Leitner A, Krenn J R, Lamprecht B, Aussenegg F R 2003 Opt. Commun. 220 137Google Scholar

    [19]

    Su K H, Wei Q H, Zhang X, Mock J J, Smith D R, Schultz S 2003 Nano Lett. 3 1087Google Scholar

    [20]

    Kabiri A, Azarian A 2021 Int. J. Opt. Photonics 15 65Google Scholar

    [21]

    Valleti K, Krishna D M, Joshi S V 2014 Sol. Energy Mater. Sol. Cells 121 14Google Scholar

    [22]

    Liu H D, Fu T R, Duan M H, Wan Q, Luo C, Chen Y M, Fu D J, Ren F, Li Q Y, Cheng X D, Yang B, Hu X J 2016 Sol. Energy Mater. Sol. Cells 157 108Google Scholar

    [23]

    Daalder J E, Wielders P G E 1975 Angular Distribution of Charged and Neutral Species in Vacuum Arcs Eindhoven, The Netherlands, August 18–22, 1975 p232

    [24]

    Liu H D, Wan Q, Xu Y R, Luo C, Chen Y M, Fu D J, Ren F, Luo G, Cheng X D, Hu X J, Yang B 2015 Sol. Energy Mater. Sol. Cells 134 261Google Scholar

    [25]

    Wang X B, Ouyang T Y, Duan X H, Ke C Z, Zhang X M, Min J, Li A, Guo W Y, Cheng X D 2017 Metals 7 137Google Scholar

    [26]

    Gong D Q, Cheng X D, Ye W P, Zhang P, Luo G 2013 J. Wuhan Univ. Technol. , Mater. Sci. Ed. 28 256Google Scholar

    [27]

    Zhang K, Hao L, Du M, Mi J, Wang J N, Meng J P 2017 Renewable Sustainable Energy Rev. 67 1282Google Scholar

    [28]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [29]

    Haddad F, Chikouche A, Laour M 2011 Energy Procedia 6 413Google Scholar

    [30]

    Li Y, Lin C J, Wu Z X, Chen Z Y, Chi C, Cao F, Mei D Q, Yan H, Tso C Y, Chao C Y H, Huang B 2021 Adv. Mater. 33 2005074Google Scholar

    [31]

    Radhakrishnan A, Murugesan D V 2014 Am. Inst. Phys. 1620 52Google Scholar

    [32]

    Tsai T K, Li Y H, Fang J S 2016 Thin Solid Films 615 91Google Scholar

    [33]

    Liang L, Romo-De-La-Cruz C O, Carvilo P, Jackson B, Gemmen E, Paredes-Navia S A, Prucz J, Chen Y, Song X Y 2019 J. Solid State Chem. 277 427Google Scholar

    [34]

    Khan A, Al-Muhaish N, Mohamedkhair A K, Khan M Y, Qamar M, Yamani Z H, Drmosh Q A 2022 J. Non-Cryst. Solids 580 121409Google Scholar

    [35]

    Gong D Q, Niu R, Xu Y J, Min J, Liu H D, Cheng X D, Yang B, Ke C Z, Wang X B, Li Q Y, Li K W, Cui Z Q 2019 Sol. Energy 180 8Google Scholar

    [36]

    Wu Z X, Liu Y J, Wei D, Yin L, Bai F X, Liu X J, Zhang Q, Cao F 2019 Mater. Today Phys. 9 100089Google Scholar

    [37]

    Wang X B, Zhang X M, Li Q Y, Min J, Cheng X D 2018 Sol. Energy Mater. Sol. Cells 188 81Google Scholar

    [38]

    程怡婷, Andrey S Makarov, Gennadii V Afonin, Vitaly A Khonik, 乔吉超 2021 物理学报 70 146401Google Scholar

    Cheng Y T, Makarov A S, Afonin G V, Khonik V A, Qiao J C 2021 Acta Phys. Sin. 70 146401Google Scholar

    [39]

    Trelewicz J R, Schuh C A 2009 Phys. Rev. B 79 094112Google Scholar

  • 图 1  Cr/AlCrN/AlCrON/AlCrO多层金属陶瓷光热转换涂层结构示意图

    Fig. 1.  Schematic diagram of the Cr/AlCrN/AlCrON/AlCrO multi-layer solar spectral selective absorbing coating.

    图 2  (a) 阴极电弧等离子体光学照片; (b) 靶面等离子体浓度空间分布示意图; (c) 分层化金属陶瓷光热转换涂层的构筑原理示意图

    Fig. 2.  (a) Distribution of plasma injected into the chamber; (b) spatial distribution diagram of plasma concentration on target surface; (c) schematic diagram of construction principle of layered cermet photothermal conversion coating.

    图 3  沉积态与500 ℃、大气条件下退火1000 h后涂层的反射光谱曲线

    Fig. 3.  Reflectance spectra of the coating before and after annealed at 500 ℃ for 1000 h in air.

    图 4  沉积态和500 ℃、大气条件下退火1000 h后涂层的GI-XRD图谱

    Fig. 4.  GI-XRD patterns of the coating before and after annealed at 500 ℃ for 1000 h in air.

    图 5  500 ℃、大气条件下退火1000 h后涂层的TEM图 (a) AlCrON基光热转换涂层的TEM明场像; (b) AlCrON亚层的HRTEM图; (c), (e) 分别为图(b)中A, B处所对应的FFT图; (d), (f) 分别为图(b)中A, B处所对应的IFFT图

    Fig. 5.  TEM image of the coating after annealed at 500℃ for 1000 h in air: (a) TEM bright field image of AlCrON based photothermal conversion coating; (b) HRTEM of the AlCrON low metal volume fraction absorbing layer; (c), (e) the FFT images of areas A, B denoted in Figure (b), respectively; (d), (f) the IFFT images of areas A, B denoted in b, respectively.

    图 6  涂层的表面形貌 (a) 沉积态; (b) 500 ℃、大气条件下退火1000 h后

    Fig. 6.  Surface morphology of the coating: (a) The as-deposited coating; (b) the coating annealed at 500 ℃ for 1000 h.

    图 7  FDTD模拟的3D模型图 (a) 同半径颗粒分层化排列; (b) 同半径颗粒随机排列; (c)不同半径颗粒分层化排列; (d) 不同半径颗粒随机化排列

    Fig. 7.  3D models of FDTD simulations: (a) Layered arrangement of particles with the same radius; (b) random arrangement of particles with the same radius; (c) particles with different radius are arranged in layers; (d) random arrangement of particles with different radius.

    图 8  FDTD模拟Cr2N纳米颗粒阵列电场分布图及其吸收、散射光谱图 (a) 同半径颗粒分层化排列; (b) 同半径颗粒随机排列; (c) 不同半径颗粒分层化排列; (d) 不同半径颗粒随机排列; (e) 4种结构的吸收光谱图; (f) 4种结构的散射光谱图

    Fig. 8.  FDTD simulation of the Electric field distribution, absorption and scattering spectra of Cr2N nanoparticle array: (a) Layered arrangement of particles with the same radius; (b) random arrangement of particles with the same radius; (c) layered arrangement of particles with different radius; (d) random arrangement of particles with different radius; (e) absorption spectra of four models; (f) scattering spectra of four models.

    图 9  FDTD模拟结果 (a) AlN和Cr2N颗粒相同尺寸的消光光谱; (b) AlN和Cr2N颗粒相同间距的消光光谱; (c) Cr2N颗粒不同尺寸大小的吸收光谱; (d) Cr2N颗粒不同间距大小的消光光谱

    Fig. 9.  FDTD simulation results: (a) Extinction spectra of AlN and Cr2N particles with the same size; (b) extinction spectra of AlN and Cr2N particles with the same spacing; (c) absorption spectra of Cr2N particles with different size; (d) extinction spectra of Cr2N particles with different spacing.

    图 10  分层化结构的光谱吸收机理示意图

    Fig. 10.  Schematic diagram of spectra absorbing mechanism of layered structure.

    图 11  AlCrON吸收涂层退火过程微观结构演变示意图

    Fig. 11.  Schematic diagram of microstructure evolution of AlCrON absorption coating during annealing.

    表 1  分层化金属陶瓷涂层的多弧离子镀制备工艺参数

    Table 1.  Detailed deposition parameters of layered cermet photothermal conversion coating.


    Ar/sccmN2/sccmO2/sccmTime/s
    Cr13000900
    AlCrN10030090
    AlCrON1203010120
    AlCrO00130120
    下载: 导出CSV

    表 2  500 ℃、大气条件下退火1000 h过程中涂层的吸收率、发射率和PC值

    Table 2.  Absorptivity, emissivity and PC value of the coating during annealing for 1000 h at 500 ℃ in atmosphere.

    Holding time/hαεα/εPC
    00.9030.1834.94
    1000.9090.2084.370.00655
    2000.9130.1904.81–0.00655
    3000.9130.2004.57–0.0014
    4000.9140.1944.71–0.0053
    5000.9140.2064.430.00065
    6000.9140.2014.55–0.0019
    7000.9140.1924.77–0.0065
    8000.9150.2124.310.0027
    9000.9160.2194.180.00505
    10000.9130.1994.60–0.0021
    下载: 导出CSV

    表 3  沉积态和500 ℃、大气条件下退火1000 h后涂层各层的EDS成分

    Table 3.  EDS composition of the coating before and after annealed at 500 ℃ for 1000 h in air.

    NOAlCr
    As-depositedAlCrN15.15063.0021.85
    AlCrON6.0043.0641.899.04
    AlCrO054.1336.998.88
    AnnealedAlCrN14.43064.6320.94
    AlCrON6.1444.2041.687.99
    AlCrO054.3036.728.98
    下载: 导出CSV
  • [1]

    Moon J, Lu D, VanSaders B, Kim T K, Kong S D, Jin S H, Chen R K, Liu Z W 2014 Nano Energy 8 238Google Scholar

    [2]

    Rebouta L, Sousa A, Andritschky M, Cerqueira F, Tavares C J, Santilli P, Pischow K 2015 Appl. Surf. Sci. 356 203Google Scholar

    [3]

    田广科, 苗树翻, 马天国, 范多旺 2015 太阳能 3 50Google Scholar

    Tian G K, Miao S F, Ma T G, Fan D W 2015 Sol. Energy 3 50Google Scholar

    [4]

    Meng J P, Guo R R, Li H, Zhao L M, Liu X P, Li Z 2018 Appl. Surf. Sci. 440 932Google Scholar

    [5]

    Tsegay M G, Gebretinsae H G, Sackey J, Arendse C J, Nuru Z Y 2021 Mater. Today Proc. 36 571Google Scholar

    [6]

    Gao J H, Wang X Y, Yang B, Tu C J, Liang L Y, Zhang H L, Zhuge F, Cao H T, Zou Y S, Yu K, Xia F, Han Y Y 2016 Adv. Mater. Interfaces 3 1600248Google Scholar

    [7]

    Barshilia H C 2014 Sol. Energy Mater. Sol. Cells 130 322Google Scholar

    [8]

    Wang X Y, Gao J H, Hu H B, Zhang H L, Liang L Y, Javaid K, Zhuge F, Cao H T, Wang L 2017 Nano Energy 37 232Google Scholar

    [9]

    Kotilainen M, Mizohata K, Honkanen M, Vuoristo P 2014 Sol. Energy Mater. Sol. Cells 120 462Google Scholar

    [10]

    Liu H D, Wan Q, Lin B Z, Wang L L, Yang X F, Wang R Y, Gong D Q, Wang Y B, Ren F, Chen Y M, Cheng X D, Yang B 2014 Sol. Energy Mater. Sol. Cells 122 226Google Scholar

    [11]

    Nuru Z Y, Motaung D E, Kaviyarasu K, Maaza M 2016 J. Alloys Compd. 664 161Google Scholar

    [12]

    Zheng L Q, Zhou F Y, Zhou Z D, Song X W, Dong G B, Wang M, Diao X G 2015 Sol. Energy 115 341Google Scholar

    [13]

    Gao T, Jelle B P, Gustavsen A 2013 J. Nanopart. Res. 15 1370Google Scholar

    [14]

    Ke C Z, Zhang X M, Guo W Y, Li Y J, Gong D Q, Cheng X D 2018 Vacuum 152 114Google Scholar

    [15]

    Zhang Q C 2001 J. Phys. D: Appl. Phys. 34 3113Google Scholar

    [16]

    史月艳, 那鸿悦 2009 太阳光谱选择性吸收膜系设计、制备及测评(第1版) (北京: 清华大学出版社)第55—56页

    Shi Y Y, Na H Y 2009 Design, Preparation and Evalvation of Solar Spectrunm Selective Absorption Films (1st Ed.) (Beijing: Tsinghua University Press) pp55–56 (in Chinese)

    [17]

    Du M, Hao L, Mi J, Lv F, Liu X P, Jiang L J, Wang S M 2011 Sol. Energy Mater. Sol. Cells 95 1193Google Scholar

    [18]

    Rechberger W, Hohenau A, Leitner A, Krenn J R, Lamprecht B, Aussenegg F R 2003 Opt. Commun. 220 137Google Scholar

    [19]

    Su K H, Wei Q H, Zhang X, Mock J J, Smith D R, Schultz S 2003 Nano Lett. 3 1087Google Scholar

    [20]

    Kabiri A, Azarian A 2021 Int. J. Opt. Photonics 15 65Google Scholar

    [21]

    Valleti K, Krishna D M, Joshi S V 2014 Sol. Energy Mater. Sol. Cells 121 14Google Scholar

    [22]

    Liu H D, Fu T R, Duan M H, Wan Q, Luo C, Chen Y M, Fu D J, Ren F, Li Q Y, Cheng X D, Yang B, Hu X J 2016 Sol. Energy Mater. Sol. Cells 157 108Google Scholar

    [23]

    Daalder J E, Wielders P G E 1975 Angular Distribution of Charged and Neutral Species in Vacuum Arcs Eindhoven, The Netherlands, August 18–22, 1975 p232

    [24]

    Liu H D, Wan Q, Xu Y R, Luo C, Chen Y M, Fu D J, Ren F, Luo G, Cheng X D, Hu X J, Yang B 2015 Sol. Energy Mater. Sol. Cells 134 261Google Scholar

    [25]

    Wang X B, Ouyang T Y, Duan X H, Ke C Z, Zhang X M, Min J, Li A, Guo W Y, Cheng X D 2017 Metals 7 137Google Scholar

    [26]

    Gong D Q, Cheng X D, Ye W P, Zhang P, Luo G 2013 J. Wuhan Univ. Technol. , Mater. Sci. Ed. 28 256Google Scholar

    [27]

    Zhang K, Hao L, Du M, Mi J, Wang J N, Meng J P 2017 Renewable Sustainable Energy Rev. 67 1282Google Scholar

    [28]

    Yee K S 1966 IEEE Trans. Antennas Propag. 14 302Google Scholar

    [29]

    Haddad F, Chikouche A, Laour M 2011 Energy Procedia 6 413Google Scholar

    [30]

    Li Y, Lin C J, Wu Z X, Chen Z Y, Chi C, Cao F, Mei D Q, Yan H, Tso C Y, Chao C Y H, Huang B 2021 Adv. Mater. 33 2005074Google Scholar

    [31]

    Radhakrishnan A, Murugesan D V 2014 Am. Inst. Phys. 1620 52Google Scholar

    [32]

    Tsai T K, Li Y H, Fang J S 2016 Thin Solid Films 615 91Google Scholar

    [33]

    Liang L, Romo-De-La-Cruz C O, Carvilo P, Jackson B, Gemmen E, Paredes-Navia S A, Prucz J, Chen Y, Song X Y 2019 J. Solid State Chem. 277 427Google Scholar

    [34]

    Khan A, Al-Muhaish N, Mohamedkhair A K, Khan M Y, Qamar M, Yamani Z H, Drmosh Q A 2022 J. Non-Cryst. Solids 580 121409Google Scholar

    [35]

    Gong D Q, Niu R, Xu Y J, Min J, Liu H D, Cheng X D, Yang B, Ke C Z, Wang X B, Li Q Y, Li K W, Cui Z Q 2019 Sol. Energy 180 8Google Scholar

    [36]

    Wu Z X, Liu Y J, Wei D, Yin L, Bai F X, Liu X J, Zhang Q, Cao F 2019 Mater. Today Phys. 9 100089Google Scholar

    [37]

    Wang X B, Zhang X M, Li Q Y, Min J, Cheng X D 2018 Sol. Energy Mater. Sol. Cells 188 81Google Scholar

    [38]

    程怡婷, Andrey S Makarov, Gennadii V Afonin, Vitaly A Khonik, 乔吉超 2021 物理学报 70 146401Google Scholar

    Cheng Y T, Makarov A S, Afonin G V, Khonik V A, Qiao J C 2021 Acta Phys. Sin. 70 146401Google Scholar

    [39]

    Trelewicz J R, Schuh C A 2009 Phys. Rev. B 79 094112Google Scholar

  • [1] 王晓波, 李克伟, 高丽娟, 程旭东, 蒋蓉. 耐高温CrAlON基太阳能光谱选择性吸收涂层的制备与热稳定性. 物理学报, 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [2] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [3] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [4] 何学敏, 钟伟, 都有为. 核壳结构磁性复合纳米材料的可控合成与性能. 物理学报, 2018, 67(22): 227501. doi: 10.7498/aps.67.20181027
    [5] 卢顺顺, 张晋敏, 郭笑天, 高廷红, 田泽安, 何帆, 贺晓金, 吴宏仙, 谢泉. 碳纳米管包裹的硅纳米线复合结构的热稳定性研究. 物理学报, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [6] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [7] 张章, 熊贤仲, 乙姣姣, 李金富. Al-Ni-RE非晶合金的晶化行为和热稳定性. 物理学报, 2013, 62(13): 136401. doi: 10.7498/aps.62.136401
    [8] 喻利花, 马冰洋, 曹峻, 许俊华. (Zr,V)N复合膜的结构、力学性能及摩擦性能研究. 物理学报, 2013, 62(7): 076202. doi: 10.7498/aps.62.076202
    [9] 顾珊珊, 胡晓君, 黄凯. 退火温度对硼掺杂纳米金刚石薄膜微结构和p型导电性能的影响. 物理学报, 2013, 62(11): 118101. doi: 10.7498/aps.62.118101
    [10] 杨铎, 钟宁, 尚海龙, 孙士阳, 李戈扬. 磁控溅射(Ti, N)/Al纳米复合薄膜的微结构和力学性能. 物理学报, 2013, 62(3): 036801. doi: 10.7498/aps.62.036801
    [11] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2012, 61(14): 148101. doi: 10.7498/aps.61.148101
    [12] 闫建成, 何智兵, 阳志林, 张颖, 唐永建, 韦建军. 射频功率对辉光放电聚合物结构和性能的影响. 物理学报, 2011, 60(3): 036501. doi: 10.7498/aps.60.036501
    [13] 袁昌来, 刘心宇, 马家峰, 周昌荣. Bi0.5Ba0.5Fe0.5Ti0.49Nb0.01O3热敏陶瓷的微结构和电学性能研究. 物理学报, 2010, 59(6): 4253-4260. doi: 10.7498/aps.59.4253
    [14] 潘金平, 胡晓君, 陆利平, 印迟. 退火对B掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, 2010, 59(10): 7410-7416. doi: 10.7498/aps.59.7410
    [15] 郭全胜, 李涵, 苏贤礼, 唐新峰. 熔体旋甩法制备p型填充式方钴矿化合物Ce0.3Fe1.5Co2.5Sb12的微结构及热电性能. 物理学报, 2010, 59(9): 6666-6672. doi: 10.7498/aps.59.6666
    [16] 苏贤礼, 唐新峰, 李涵. 熔体旋甩工艺对n型InSb化合物的微结构及热电性能的影响. 物理学报, 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [17] 闫建成, 何智兵, 阳志林, 陈志梅, 唐永建, 韦建军. 玻璃微球表面辉光等离子体聚合物涂层的热稳定性研究. 物理学报, 2010, 59(11): 8005-8009. doi: 10.7498/aps.59.8005
    [18] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性. 物理学报, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [19] 张红娣, 安玉凯, 麦振洪, 高 炬, 胡凤霞, 王 勇, 贾全杰. La0.8Ca0.2MnO3/SrTiO3薄膜厚度对其结构及磁学性能的影响. 物理学报, 2007, 56(9): 5347-5352. doi: 10.7498/aps.56.5347
    [20] 朱明刚, 潘伟, 李卫. Dy与Co对HDDR粘结磁体的温度稳定性与磁性能的影响. 物理学报, 2002, 51(7): 1608-1611. doi: 10.7498/aps.51.1608
计量
  • 文章访问数:  2439
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-26
  • 修回日期:  2023-01-06
  • 上网日期:  2023-01-13
  • 刊出日期:  2023-03-05

/

返回文章
返回