搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

减小边缘复合助力28%效率的四端钙钛矿/硅叠层太阳能电池

方正 张飞 秦校军 杨柳 靳永斌 周养盈 王兴涛 刘云 谢立强 魏展画

引用本文:
Citation:

减小边缘复合助力28%效率的四端钙钛矿/硅叠层太阳能电池

方正, 张飞, 秦校军, 杨柳, 靳永斌, 周养盈, 王兴涛, 刘云, 谢立强, 魏展画

Four-terminal perovskite/silicon series solar cells with 28% efficiency achieved by suppressing edge recombination

Fang Zheng, Zhang Fei, Qin Xiao-Jun, Yang Liu, Jin Yong-Bin, Zhou Yang-Ying, Wang Xing-Tao, Liu Yun, Xie Li-Qiang, Wei Zhan-Hua
PDF
HTML
导出引用
  • 钙钛矿/硅叠层太阳能电池由于能突破单结太阳能电池的效率极限而吸引了广泛的研究兴趣. 然而, 在将商业化的大面积硅电池切割为实验室所需的平方厘米级的小面积电池时, 会造成显著的效率下降, 限制了叠层电池的性能. 为了消除传统的激光切割法造成的热损伤和热传导, 减少切割后的异质结硅电池的非辐射复合, 本工作采用砂轮划片这一冷加工方法, 对异质结硅电池进行切割. 与采用激光切割法得到的器件相比, 冷加工法得到的异质结硅电池的截面损伤小, 非辐射复合得到显著抑制, 器件的开路电压和填充因子均得到提高, 平均光电转换效率提高了1%. 将得到的硅电池与正式半透明钙钛矿太阳能电池进行机械堆叠, 获得了效率超过28%的四端钙钛矿/硅叠层太阳能电池.
    Although the commercial application of solar cells pursues scalable and large-area devices, small-area solar cells on a scale of several centimeters possess many advantages such as low fabrication cost and facile high-throughput screening in the research laboratory. Most emerging photovoltaic technology starts from the studying of small-area devices. Recently, perovskite/silicon tandem solar cells have aroused extensive research interest because they can break through the radiative efficiency limit of single-junction solar cells. However, when commercial large-area silicon cells are cut into small pieces with a few squared centimeters in area for laboratory use, there occurs a significant efficiency loss, limiting the performance of tandem cells. Herein, to eliminate the thermal damage caused by the traditional laser cutting method and also reduce the non-radiative recombination of heterojunction silicon cells after being cut, a cold-manufacturing method of grinding wheel dicing is used to cut heterojunction silicon cells. This method is realized by high-speed mechanical grinding accompanied by liquid washing, which avoids damaging the edge of solar cell caused by heat. Compared with the device cut by laser, the heterojunction silicon cells cut by the cold-manufacturing method exhibit less cross-sectional damage. The measurements by scanning electron microscopy (SEM) and three-dimensional optical profilometer reveal that the morphology of the device edge is smoother than the counterpart cut by laser. Device physics measurements including electrochemical impedance spectrum(EIS), dark current-voltage curves, transient photovoltage (TPV), transient photocurrent (TPC), and the dependence of short-circuit current density and open-circuit voltage on light intensity reveal that the cold-manufacturing method can significantly prevent the heterojunction silicon cells from non-radiatively recombining after being cut. These results indicate that the edge-recombination of the silicon solar cells cut by grinding wheels is reduced compared with that cut by laser. As a result, statistical analysis of the device performance reveals that both the open-circuit voltage and fill factor of the device are improved, and the average photoelectric conversion efficiency increases by an absolute efficiency of ~1%. Stacking the obtained silicon cells with the normal transparent perovskite solar cells, the obtained four-terminal perovskite/silicon tandem solar cells deliver an efficiency of over 28%. This work emphasizes the importance of reducing efficiency loss during manufacturing the heterojunction silicon solar cell in fabricating high-performance silicon-based tandem solar cells.
      通信作者: 秦校军, xj_qin@qny.chng.com.cn ; 谢立强, lqxie@hqu.edu.cn ; 魏展画, weizhanhua@hqu.edu.cn
    • 基金项目: 区域创新发展联合基金重点项目(批准号: U21A2078)和国家自然科学基金(批准号: 22179042)资助的课题.
      Corresponding author: Qin Xiao-Jun, xj_qin@qny.chng.com.cn ; Xie Li-Qiang, lqxie@hqu.edu.cn ; Wei Zhan-Hua, weizhanhua@hqu.edu.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U21A2078) and the National Natural Science Foundation of China (Grant No. 22179042).
    [1]

    Binetti S, Acciarri M, Le Donne A, Morgano M, Jestin Y 2013 Int. J. Photoenergy 2013 249502Google Scholar

    [2]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nat. Energy 2 17032Google Scholar

    [3]

    Andreani L C, Bozzola A, Kowalczewski P, Liscidini M, Redorici L 2019 Adv. Phys. X. 4 1548305Google Scholar

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [6]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [7]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photonics 13 460Google Scholar

    [8]

    National Renewable Energy Laboratory 2022 Research Cell Efficienc Recordshttps://www.nrel.gov/pv/cell-efficiency.html (accessed December, 2022)

    [9]

    Wang R, Huang T, Xue J, Tong J, Zhu K, Yang Y 2021 Nat. Photonics 15 411Google Scholar

    [10]

    Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C 2016 Science 352 aad4424Google Scholar

    [11]

    Jošt M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar

    [12]

    Liu N, Wang L, Xu F, Wu J, Song T, Chen Q 2020 Front. Chem. 8 603375Google Scholar

    [13]

    Aydin E, Allen T G, De Bastiani M, Xu L, Ávila J, Salvador M, Van Kerschaver E, De Wolf S 2020 Nat. Energy 5 851Google Scholar

    [14]

    Fu F, Li J, Yang T C-J, Liang H, Faes A, Jeangros Q, Ballif C, Hou Y 2022 Adv. Mater. 34 2106540Google Scholar

    [15]

    Coletti G, Luxembourg S L, Geerligs L J, et al. 2020 ACS Energy Lett. 5 1676Google Scholar

    [16]

    Kothandaraman R K, Jiang Y, Feurer T, Tiwari A N, Fu F 2020 Small Methods 4 2000395Google Scholar

    [17]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

    [18]

    Kim C U, Jung E D, Noh Y W, Seo S K, Choi Y, Park H, Song M H, Choi K J 2021 EcoMat 3 e12084Google Scholar

    [19]

    Chen C, Song Z, Xiao C, Awni R A, Yao C, Shrestha N, Li C, Bista S S, Zhang Y, Chen L, Ellingson R J, Jiang C-S, Al-Jassim M, Fang G, Yan Y 2020 ACS Energy Lett. 5 2560Google Scholar

    [20]

    Wang D, Guo H, Wu X, Deng X, Li F, Li Z, Lin F, Zhu Z, Zhang Y, Xu B, Jen A K-Y 2022 Adv. Funct. Mater. 32 2107359Google Scholar

    [21]

    Chen B, Baek S-W, Hou Y, Aydin E, et al. 2020 Nat. Commun. 11 1257Google Scholar

    [22]

    Ying Z, Yang X, Zheng J, Zhu Y, Xiu J, Chen W, Shou C, Sheng J, Zeng Y, Yan B, Pan H, Ye J, He Z 2021 J. Mater. Chem. A 9 12009Google Scholar

    [23]

    Wang Z, Zhu X, Zuo S, Chen M, Zhang C, Wang C, Ren X, Yang Z, Liu Z, Xu X, Chang Q, Yang S, Meng F, Liu Z, Yuan N, Ding J, Liu S, Yang D 2020 Adv. Funct. Mater. 30 1908298Google Scholar

    [24]

    Tong J, Jiang Q, Zhang F, Kang S B, Kim D H, Zhu K 2020 ACS Energy Lett. 6 232Google Scholar

    [25]

    Anaya M, Lozano G, Calvo M E, Míguez H 2017 Joule 1 769Google Scholar

    [26]

    Chen B, Ren N, Li Y, Yan L, Mazumdar S, Zhao Y, Zhang X 2021 Adv. Energy Mater. 11 2100856Google Scholar

    [27]

    王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹 2021 物理学报 70 057802Google Scholar

    Wang Q, Yan L L, Chen B B, Li R J, Wang S L, Wang P Y, Hang Q, Xu S Z, Hou G F, Chen X L, Li Y L, Ding Y, Zhang D K, Wang G C, Zhao Y, Zhang X D 2021 Acta Phys. Sin. 70 057802Google Scholar

    [28]

    Chen K C, Su Y K, Lin C L, Hsu H C 2011 J. Lightwave Technol. 29 1907Google Scholar

    [29]

    Rauscher P, Hauptmann J, Beyer E 2013 Phys. Procedia 41 312Google Scholar

    [30]

    Park J, Dao V A, Kim S, Pham D P, Kim S, Le A H T, Kang J, Yi J 2018 Sci. Rep. 8 15386Google Scholar

    [31]

    Li M, Chen J, Lin Q, Wu Y, Mu D 2019 Diam. Relat. Mater. 97 107440Google Scholar

    [32]

    Gurevich E L, Gurevich S V 2014 Appl. Surf. Sci. 302 118Google Scholar

    [33]

    He Z, Xiong J, Dai Q, Yang B, Zhang J, Xiao S 2020 Nanoscale 12 6767Google Scholar

    [34]

    Lian X, Chen J, Shan S, Wu G, Chen H 2020 ACS Appl. Mater. Interfaces 12 46340Google Scholar

  • 图 1  (a) HIT电池的结构示意图; (b) HIT电池切割前后示意图; (c)—(f) 激光切割优化后的器件性能 (c)VOC, (d) JSC, (e) FF, (f) PCE

    Fig. 1.  (a) The structure of HIT silicon solar cell; (b) optical image of HIT silicon solar cell before and after cutting; (c)–(f) device performance after laser cutting: (c)VOC, (d) JSC, (e) FF, (f) PCE.

    图 2  砂轮黏合剂的种类对切割后HIT电池性能的影响 (a)VOC; (b) JSC; (c) FF; (d) PCE

    Fig. 2.  The influence of different grinding wheel adhesives on the performance of HIT silicon cells after cutting: (a) VOC; (b) JSC; (c) FF; (d) PCE.

    图 3  Cu-Sn刀具中金刚石磨粒的粒度对切割后HIT电池性能的影响 (a) VOC; (b) JSC; (c) FF; (d) PCE

    Fig. 3.  Influence of diamond particle size in Cu-Sn cutter on the performance of HIT silicon solar cell after cutting: (a) VOC; (b) JSC; (c) FF; (d) PCE.

    图 4  砂轮划片机切割与激光切割后HIT电池截面形貌和粗糙度对比 (a), (b)截面形貌; (c), (d)截面局部放大图; (e), (f)三维轮廓图

    Fig. 4.  Comparison of cross-sectional SEM images and roughness of HIT silicon solar cell after grinding wheel and laser cutting: (a), (b) Cross-sectional morphology; (c), (d) partial magnification of cross-section morphology; (e), (f) 3 D outline of the cross-section.

    图 5  切割后HIT电池的载流子复合动力学 (a) 在0.05 V偏压和黑暗条件下测得器件EIS; (b) 器件的暗态J-V曲线; (c) 瞬态光电压; (d) 瞬态光电流; (e) 短路电流密度与光强的关系; (f)开路电压与光强的关系

    Fig. 5.  Charge recombination kinetics of silicon solar cells after cutting: (a) Electrochemical impedance spectra of devices measured in the dark at 0.05 V bias; (b) dark J-V curves of the devices; (c) TPV; (d) TPC; (e) relationship between JSC and light intensity; (f) relationship between VOC and light intensity.

    图 6  (a) 4T-TSCs结构示意图; (b) ST-PSCs的截面SEM形貌; (c) 切割后HIT硅电池的J-V曲线; (d) 4T-TSCs的EQE曲线; (e) 4T-TSCs的J-V曲线

    Fig. 6.  (a) Schematic diagram of the structure of 4T-TSCs; (b) cross-sectional SEM image of ST-PSC; (c) J-V curve of HIT silicon solar cell after cutting; (d) EQE curves of 4T-TSCs; (e) J-V curves of 4T-TSCs.

    表 1  切割前与不同激光功率切割后对应HIT电池的最优性能

    Table 1.  Optimal performance of HIT silicon solar cell before and after cutting with different laser power.

    Laser
    power
    VOC/VJSC/(mA·cm–2)FF/%PCE/%
    Before
    cutting
    0.73139.4682.6123.83
    9 W0.70338.7974.3620.29
    12 W0.70139.2775.8320.88
    15 W0.69739.6273.9020.41
    18 W0.69939.5374.2420.52
    下载: 导出CSV

    表 2  不同砂轮黏合剂所对应切割后HIT电池最优器件的性能

    Table 2.  Optimal performance of HIT silicon solar cell after cutting with different grinding wheel adhesives.

    AdhesivesJSC /(mA·cm–2)VOC /VFF/%PCE /%
    Nickel plating39.450.69570.6419.37
    Cu-Sn39.470.71675.9821.47
    resin38.980.70976.1521.04
    下载: 导出CSV

    表 3  Cu-Sn刀具中金刚石磨粒的粒度对应切割后HIT电池最优器件的性能

    Table 3.  The influence of the size of diamond abrasive in Cu-Sn cutter on the performance of HIT silicon solar cells after cutting.

    Particle sizeVOC/VJSC /(mA·cm–2)FF/%PCE/%
    #4000.70339.2373.4820.28
    #8000.71639.4575.9821.47
    #20000.70439.5278.3721.81
    #30000.71239.3576.2121.34
    下载: 导出CSV

    表 4  4 T-TSCs的详细J-V参数

    Table 4.  Detailed J-V parameters of 4 T-TSCs.

    DeviceVOC/VJSC/
    (mA·cm–2)
    FF/%PCE/%
    Silicon cell (filtered by
    ST-PSC)
    0.68016.8779.049.08
    ST-PSCs1.20720.2278.8119.25
    4 T-TSCs28.33
    下载: 导出CSV
  • [1]

    Binetti S, Acciarri M, Le Donne A, Morgano M, Jestin Y 2013 Int. J. Photoenergy 2013 249502Google Scholar

    [2]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Nat. Energy 2 17032Google Scholar

    [3]

    Andreani L C, Bozzola A, Kowalczewski P, Liscidini M, Redorici L 2019 Adv. Phys. X. 4 1548305Google Scholar

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [5]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [6]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234Google Scholar

    [7]

    Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J 2019 Nat. Photonics 13 460Google Scholar

    [8]

    National Renewable Energy Laboratory 2022 Research Cell Efficienc Recordshttps://www.nrel.gov/pv/cell-efficiency.html (accessed December, 2022)

    [9]

    Wang R, Huang T, Xue J, Tong J, Zhu K, Yang Y 2021 Nat. Photonics 15 411Google Scholar

    [10]

    Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C 2016 Science 352 aad4424Google Scholar

    [11]

    Jošt M, Kegelmann L, Korte L, Albrecht S 2020 Adv. Energy Mater. 10 1904102Google Scholar

    [12]

    Liu N, Wang L, Xu F, Wu J, Song T, Chen Q 2020 Front. Chem. 8 603375Google Scholar

    [13]

    Aydin E, Allen T G, De Bastiani M, Xu L, Ávila J, Salvador M, Van Kerschaver E, De Wolf S 2020 Nat. Energy 5 851Google Scholar

    [14]

    Fu F, Li J, Yang T C-J, Liang H, Faes A, Jeangros Q, Ballif C, Hou Y 2022 Adv. Mater. 34 2106540Google Scholar

    [15]

    Coletti G, Luxembourg S L, Geerligs L J, et al. 2020 ACS Energy Lett. 5 1676Google Scholar

    [16]

    Kothandaraman R K, Jiang Y, Feurer T, Tiwari A N, Fu F 2020 Small Methods 4 2000395Google Scholar

    [17]

    Leijtens T, Bush K A, Prasanna R, McGehee M D 2018 Nat. Energy 3 828Google Scholar

    [18]

    Kim C U, Jung E D, Noh Y W, Seo S K, Choi Y, Park H, Song M H, Choi K J 2021 EcoMat 3 e12084Google Scholar

    [19]

    Chen C, Song Z, Xiao C, Awni R A, Yao C, Shrestha N, Li C, Bista S S, Zhang Y, Chen L, Ellingson R J, Jiang C-S, Al-Jassim M, Fang G, Yan Y 2020 ACS Energy Lett. 5 2560Google Scholar

    [20]

    Wang D, Guo H, Wu X, Deng X, Li F, Li Z, Lin F, Zhu Z, Zhang Y, Xu B, Jen A K-Y 2022 Adv. Funct. Mater. 32 2107359Google Scholar

    [21]

    Chen B, Baek S-W, Hou Y, Aydin E, et al. 2020 Nat. Commun. 11 1257Google Scholar

    [22]

    Ying Z, Yang X, Zheng J, Zhu Y, Xiu J, Chen W, Shou C, Sheng J, Zeng Y, Yan B, Pan H, Ye J, He Z 2021 J. Mater. Chem. A 9 12009Google Scholar

    [23]

    Wang Z, Zhu X, Zuo S, Chen M, Zhang C, Wang C, Ren X, Yang Z, Liu Z, Xu X, Chang Q, Yang S, Meng F, Liu Z, Yuan N, Ding J, Liu S, Yang D 2020 Adv. Funct. Mater. 30 1908298Google Scholar

    [24]

    Tong J, Jiang Q, Zhang F, Kang S B, Kim D H, Zhu K 2020 ACS Energy Lett. 6 232Google Scholar

    [25]

    Anaya M, Lozano G, Calvo M E, Míguez H 2017 Joule 1 769Google Scholar

    [26]

    Chen B, Ren N, Li Y, Yan L, Mazumdar S, Zhao Y, Zhang X 2021 Adv. Energy Mater. 11 2100856Google Scholar

    [27]

    王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹 2021 物理学报 70 057802Google Scholar

    Wang Q, Yan L L, Chen B B, Li R J, Wang S L, Wang P Y, Hang Q, Xu S Z, Hou G F, Chen X L, Li Y L, Ding Y, Zhang D K, Wang G C, Zhao Y, Zhang X D 2021 Acta Phys. Sin. 70 057802Google Scholar

    [28]

    Chen K C, Su Y K, Lin C L, Hsu H C 2011 J. Lightwave Technol. 29 1907Google Scholar

    [29]

    Rauscher P, Hauptmann J, Beyer E 2013 Phys. Procedia 41 312Google Scholar

    [30]

    Park J, Dao V A, Kim S, Pham D P, Kim S, Le A H T, Kang J, Yi J 2018 Sci. Rep. 8 15386Google Scholar

    [31]

    Li M, Chen J, Lin Q, Wu Y, Mu D 2019 Diam. Relat. Mater. 97 107440Google Scholar

    [32]

    Gurevich E L, Gurevich S V 2014 Appl. Surf. Sci. 302 118Google Scholar

    [33]

    He Z, Xiong J, Dai Q, Yang B, Zhang J, Xiao S 2020 Nanoscale 12 6767Google Scholar

    [34]

    Lian X, Chen J, Shan S, Wu G, Chen H 2020 ACS Appl. Mater. Interfaces 12 46340Google Scholar

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究. 物理学报, 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [3] 姚美灵, 廖纪星, 逯好峰, 黄强, 崔艳峰, 李翔, 杨雪莹, 白杨. 影响钙钛矿/异质结叠层太阳能电池效率及稳定性的关键问题与解决方法. 物理学报, 2024, 73(8): 088801. doi: 10.7498/aps.73.20231977
    [4] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [5] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [6] 张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉. 迈向效率大于30%的钙钛矿/晶硅叠层太阳能电池技术的研究进展. 物理学报, 2023, 72(5): 058801. doi: 10.7498/aps.72.20222019
    [7] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [8] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [9] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [10] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [11] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流. 锡基钙钛矿太阳能电池载流子传输层的探讨. 物理学报, 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [12] 王其, 延玲玲, 陈兵兵, 李仁杰, 王三龙, 王鹏阳, 黄茜, 许盛之, 侯国付, 陈新亮, 李跃龙, 丁毅, 张德坤, 王广才, 赵颖, 张晓丹. 钙钛矿/硅异质结叠层太阳电池: 光学模拟的研究进展. 物理学报, 2021, 70(5): 057802. doi: 10.7498/aps.70.20201585
    [13] 张翱, 张春秀, 陈云琳, 张春梅, 孟涛. 反式卤素钙钛矿太阳能电池光伏性能的理论研究. 物理学报, 2020, 69(11): 118801. doi: 10.7498/aps.69.20200089
    [14] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [15] 夏俊民, 梁超, 邢贵川. 喷墨打印钙钛矿太阳能电池研究进展与展望. 物理学报, 2019, 68(15): 158807. doi: 10.7498/aps.68.20190302
    [16] 陈俊帆, 任慧志, 侯福华, 周忠信, 任千尚, 张德坤, 魏长春, 张晓丹, 侯国付, 赵颖. 钙钛矿/硅叠层太阳电池中平面a-Si:H/c-Si异质结底电池的钝化优化及性能提高. 物理学报, 2019, 68(2): 028101. doi: 10.7498/aps.68.20181759
    [17] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [18] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [19] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
计量
  • 文章访问数:  4951
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-19
  • 修回日期:  2022-12-17
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-03-05

/

返回文章
返回