搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni/Pt异质结界面的自旋阻塞效应

杜梦瑶 邱志勇

引用本文:
Citation:

Ni/Pt异质结界面的自旋阻塞效应

杜梦瑶, 邱志勇

Spin blocking effect at Ni/Pt heterojunction

Du Meng-Yao, Qiu Zhi-Yong
PDF
HTML
导出引用
  • 相比于电荷流的高功耗, 自旋流可以高效地传输能量与信息的同时避免焦耳热的产生, 因此基于自旋流的电子器件成为未来电子信息器件研发的重要方向之一. 自旋流及其输运现象的相关研究是自旋电子学器件的开发基础. 本文着眼于铁磁金属镍(Ni)与非磁重金属(Pt)构建的异质结结构, 研究了异质结界面的自旋输运特性, 发现其对扩散自旋流的全阻塞效应. 本工作以基于钇铁石榴石(yttrium iron garnet, YIG)的YIG/Ni/Pt三层器件开展, 采用自旋泵浦技术激发扩散自旋流注入到镍中, 同时检测与分析器件中的逆自旋霍尔电压, 并与YIG/Ni双层器件中的信号进行对比分析. 结果证明YIG/Ni/Pt三层器件中的铂金属层仅起分流作用而对逆自旋霍尔电流无贡献, 即镍层中的扩散自旋流被阻塞于Ni/Pt异质结界面. 本工作加深了对界面处自旋流输运的认识, 铁磁性金属/非磁重金属自旋流阻塞界面的发现也为自旋电子器件的设计及新功能开发提供了新的思路与手段.
    Spin current, the flow of spin angular momentum, can carry and transport energy and/or information without generating Joule heating, which makes spin-based devices become one of the potential aspects for the next-generation information processing devices. It is important to investigate the generation, transport, and detection of spins for developing spin-based devices, in which the spin transport and its related phenomena attract ongoing interest due to the complex interactions between spins and condensed matter system. Here, spin transport phenomenon is studied at a heterojunction consisting of ferromagnetic metal nickel and nonmagnetic heavy metal platinum, where transport spins are found to be totally blocked. Two series of spin-pumping devices, i.e. the yttrium iron garnet (YIG)/Ni/Pt trilayer devices and the contrastive YIG/Ni bilayer devices, are made in this work. The YIG serves as a substrate and spin-pump layer, on which nickel film and platinum film are deposited by a dc magnetron sputtering system. Spin currents are generated from YIG and injected into nickel layers by spin pumping technology. The voltage signals corresponding to the inverse spin Hall effect are detected and analyzed comparatively for both YIG/Ni/Pt trilayer device and YIG/Ni bilayer device. It is found that the platinum layers in YIG/Ni/Pt trilayer devices act only as charge current shunting but do not contribute to the spin-charge conversion. This implies that the spin current cannot transport through the Ni/Pt interface even when the nickel layer is as thin as 1 nm, in other words, the spin current is blocked at the Ni/Pt interface. Our result proposes a heterojunction that can block transport spins totally, which has never been discussed before, and the present study may expand the views and promote the development of spin-based devices.
      通信作者: 邱志勇, qiuzy@dlut.edu.cn
    • 基金项目: 国家自然科学学基金(批准号: 11874098, 52171173)资助的课题.
      Corresponding author: Qiu Zhi-Yong, qiuzy@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874098, 52171173).
    [1]

    Flatte M E 2007 IEEE Trans. Electron Devices 54 907Google Scholar

    [2]

    Brataas A, Kent A D, Ohno H 2012 Nat. Mater. 11 372Google Scholar

    [3]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [4]

    Matsuo M, Ieda J, Saitoh E, Maekawa S 2011 Phys. Rev. Lett. 106 076601Google Scholar

    [5]

    Maekawa S, Adachi H, Uchida K-i, Ieda J i, Saitoh E 2013 J. Phys. Soc. Jpn. 82 102002Google Scholar

    [6]

    Takahashi S, Maekawa S 2008 Sci. Technol. Adv. Mater. 9 014105Google Scholar

    [7]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [8]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [9]

    Shen J, Feng Z, Xu P, Hou D, Gao Y, Jin X 2021 Phys. Rev. Lett. 126 197201Google Scholar

    [10]

    Chen X, Shi S, Shi G, Fan X, Song C, Zhou X, Bai H, Liao L, Zhou Y, Zhang H, Li A, Chen Y, Han X, Jiang S, Zhu Z, Wu H, Wang X, Xue D, Yang H, Pan F 2021 Nat. Mater. 20 800Google Scholar

    [11]

    Okamoto S 2016 Phys. Rev. B 93 064421Google Scholar

    [12]

    Liu M, Sha R, Wang M, Peng Y, Zhang Z, Zou A, Xu Y, Guo F, Qiu Z 2021 J. Phys. D Appl. Phys. 54 155001Google Scholar

    [13]

    Zhu L, Ralph D C, Buhrman R A 2019 Phys. Rev. Lett. 123 057203Google Scholar

    [14]

    Ong T T, Nagaosa N 2018 Phys. Rev. Lett. 121 066603Google Scholar

    [15]

    Wimmer T, Althammer M, Liensberger L, Vlietstra N, Geprags S, Weiler M, Gross R, Huebl H 2019 Phys. Rev. Lett. 123 257201Google Scholar

    [16]

    Kroemer H 2001 Rev. Mod. Phys. 73 783Google Scholar

    [17]

    Kurt H, Loloee R, Eid K, Pratt W P, Bass J 2002 Appl. Phys. Lett. 81 4787Google Scholar

    [18]

    Nguyen H Y T, Pratt W P, Bass J 2014 J. Magn. Magn. Mater. 361 30Google Scholar

    [19]

    Rojas-Sanchez J C, Reyren N, Laczkowski P, Savero W, Attane J P, Deranlot C, Jamet M, George J M, Vila L, Jaffres H 2014 Phys. Rev. Lett. 112 106602Google Scholar

    [20]

    Chen K, Zhang S 2015 Phys. Rev. Lett. 114 126602Google Scholar

    [21]

    Hoffmann A 2007 Phys. Status Solidi C 4 4236Google Scholar

    [22]

    Yang F, Chris Hammel P 2018 J. Phys. D Appl. Phys. 51 253001Google Scholar

    [23]

    Ando K, Kajiwara Y, Takahashi S, Maekawa S, Takemoto K, Takatsu M, Saitoh E 2008 Phys. Rev. B 78 014413Google Scholar

    [24]

    Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E 2011 J. Appl. Phys. 109 103913Google Scholar

    [25]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar

    [26]

    Qiu Z, Li J, Hou D, Arenholz E, N'Diaye A T, Tan A, Uchida K, Sato K, Okamoto S, Tserkovnyak Y, Qiu Z Q, Saitoh E 2016 Nat. Commun. 7 12670Google Scholar

    [27]

    Sha R, Liu Q, Wang M, Liu M, Peng Y, Zhang Z, Zou A, Xu Y, Jiang X, Qiu Z 2021 Phys. Rev. B 103 024432Google Scholar

    [28]

    Qiu Z, An T, Uchida K, Hou D, Shiomi Y, Fujikawa Y, Saitoh E 2013 Appl. Phys. Lett. 103 182404Google Scholar

    [29]

    Du C, Wang H, Yang F, Hammel P C 2014 Phys. Rev. B 90 140407Google Scholar

    [30]

    Nakayama H, Ando K, Harii K, Yoshino T, Takahashi R, Kajiwara Y, Uchida K, Fujikawa Y, Saitoh E 2012 Phys. Rev. B 85 144408Google Scholar

  • 图 1  金属/金属界面处自旋流传输 (a) 与自旋流阻塞(b)示意图; (c) 自旋泵浦效应诱导的自旋注入及逆自旋霍尔效应测量的原理图

    Fig. 1.  Illustration of the spin transport (a) and spin block (b) at a metal/metal interface; (c) illustration of spin injection by spin pumping effect and inverse spin Hall effect measurement.

    图 2  (a) 自旋泵浦实验设置与YIG/Ni/Pt三层器件及YIG/Ni双层器件的结构示意图; (b) 多层器件的典型微波吸收谱; (c) YIG/Ni(3 nm)/Pt三层及YIG/Ni(3 nm)双层器件的电压信号V与外磁场H的依存关系图

    Fig. 2.  (a) Illustration of experimental spin pumping set-up of YIG/Ni/Pt trilayer and YIG/Ni bilayer devices; (b) the typical microwave absorption spectrum; (c) the external magnetic field H dependences of the voltage signals V for the YIG/Ni(3 nm)/Pt trilayer and YIG/Ni(3 nm) bilayer devices.

    图 3  不同Ni层厚度dNi的YIG/Ni/Pt三层 (a) 及YIG/Ni双层器件 (b) 的电压信号V与外磁场H的关系; (c) 逆自旋霍尔电压VISHE 与Ni层厚度dNi的关系(插图为两种器件的横向电阻R与Ni层厚度dNi的关系)

    Fig. 3.  The external magnetic field H dependences of the voltage signals V for the YIG/Ni/Pt trilayer devices (a) and the YIG/Ni bilayer devices (b) with different nickel layer thicknesses dNi; (c) the nickel layer thickness dNi dependences of the inverse spin Hall voltage signal VISHE for the two series of devices (the inset shows the nickel layer thickness dNi dependences of the transverse resistances R).

    图 4  YIG/Ni/Pt三层及YIG/Ni双层器件中逆自旋霍尔电流 IISHE与Ni层厚度dNi的依存关系图(插图是两种器件中逆自旋霍尔效应测量的等效电路图)

    Fig. 4.  The nickel layer thicknesses dNi dependences of the inverse spin Hall current IISHE for the YIG/Ni/Pt trilayer devices and the YIG/Ni bilayer devices (the insets are the equivalent circuits for inverse spin Hall measurement for the two series of devices).

  • [1]

    Flatte M E 2007 IEEE Trans. Electron Devices 54 907Google Scholar

    [2]

    Brataas A, Kent A D, Ohno H 2012 Nat. Mater. 11 372Google Scholar

    [3]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [4]

    Matsuo M, Ieda J, Saitoh E, Maekawa S 2011 Phys. Rev. Lett. 106 076601Google Scholar

    [5]

    Maekawa S, Adachi H, Uchida K-i, Ieda J i, Saitoh E 2013 J. Phys. Soc. Jpn. 82 102002Google Scholar

    [6]

    Takahashi S, Maekawa S 2008 Sci. Technol. Adv. Mater. 9 014105Google Scholar

    [7]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [8]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [9]

    Shen J, Feng Z, Xu P, Hou D, Gao Y, Jin X 2021 Phys. Rev. Lett. 126 197201Google Scholar

    [10]

    Chen X, Shi S, Shi G, Fan X, Song C, Zhou X, Bai H, Liao L, Zhou Y, Zhang H, Li A, Chen Y, Han X, Jiang S, Zhu Z, Wu H, Wang X, Xue D, Yang H, Pan F 2021 Nat. Mater. 20 800Google Scholar

    [11]

    Okamoto S 2016 Phys. Rev. B 93 064421Google Scholar

    [12]

    Liu M, Sha R, Wang M, Peng Y, Zhang Z, Zou A, Xu Y, Guo F, Qiu Z 2021 J. Phys. D Appl. Phys. 54 155001Google Scholar

    [13]

    Zhu L, Ralph D C, Buhrman R A 2019 Phys. Rev. Lett. 123 057203Google Scholar

    [14]

    Ong T T, Nagaosa N 2018 Phys. Rev. Lett. 121 066603Google Scholar

    [15]

    Wimmer T, Althammer M, Liensberger L, Vlietstra N, Geprags S, Weiler M, Gross R, Huebl H 2019 Phys. Rev. Lett. 123 257201Google Scholar

    [16]

    Kroemer H 2001 Rev. Mod. Phys. 73 783Google Scholar

    [17]

    Kurt H, Loloee R, Eid K, Pratt W P, Bass J 2002 Appl. Phys. Lett. 81 4787Google Scholar

    [18]

    Nguyen H Y T, Pratt W P, Bass J 2014 J. Magn. Magn. Mater. 361 30Google Scholar

    [19]

    Rojas-Sanchez J C, Reyren N, Laczkowski P, Savero W, Attane J P, Deranlot C, Jamet M, George J M, Vila L, Jaffres H 2014 Phys. Rev. Lett. 112 106602Google Scholar

    [20]

    Chen K, Zhang S 2015 Phys. Rev. Lett. 114 126602Google Scholar

    [21]

    Hoffmann A 2007 Phys. Status Solidi C 4 4236Google Scholar

    [22]

    Yang F, Chris Hammel P 2018 J. Phys. D Appl. Phys. 51 253001Google Scholar

    [23]

    Ando K, Kajiwara Y, Takahashi S, Maekawa S, Takemoto K, Takatsu M, Saitoh E 2008 Phys. Rev. B 78 014413Google Scholar

    [24]

    Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S, Saitoh E 2011 J. Appl. Phys. 109 103913Google Scholar

    [25]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar

    [26]

    Qiu Z, Li J, Hou D, Arenholz E, N'Diaye A T, Tan A, Uchida K, Sato K, Okamoto S, Tserkovnyak Y, Qiu Z Q, Saitoh E 2016 Nat. Commun. 7 12670Google Scholar

    [27]

    Sha R, Liu Q, Wang M, Liu M, Peng Y, Zhang Z, Zou A, Xu Y, Jiang X, Qiu Z 2021 Phys. Rev. B 103 024432Google Scholar

    [28]

    Qiu Z, An T, Uchida K, Hou D, Shiomi Y, Fujikawa Y, Saitoh E 2013 Appl. Phys. Lett. 103 182404Google Scholar

    [29]

    Du C, Wang H, Yang F, Hammel P C 2014 Phys. Rev. B 90 140407Google Scholar

    [30]

    Nakayama H, Ando K, Harii K, Yoshino T, Takahashi R, Kajiwara Y, Uchida K, Fujikawa Y, Saitoh E 2012 Phys. Rev. B 85 144408Google Scholar

  • [1] 李婧, 丁帅帅, 胡文平. 有机自旋电子器件中的自旋界面研究进展. 物理学报, 2022, 71(6): 067201. doi: 10.7498/aps.71.20211786
    [2] 魏高帅, 张慧, 吴晓君, 张洪瑞, 王春, 王博, 汪力, 孙继荣. 飞秒激光泵浦LaAlO3/SrTiO3异质结产生太赫兹波辐射. 物理学报, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [3] 陈兴, 赵晗, 张艳, 刘露, 杨志宏, 宋玲玲. 具有连续反量子点的石墨烯纳米带中纯自旋流的实现. 物理学报, 2021, 70(19): 198503. doi: 10.7498/aps.70.20210242
    [4] 钟东洲, 曾能, 杨华, 徐喆. 外部光注入的光泵浦自旋垂直腔表面发射激光器中的两个混沌偏振分量对两个复杂形状目标中的多区域精确测距. 物理学报, 2021, 70(7): 074206. doi: 10.7498/aps.70.20201693
    [5] 罗慧玲, 凌晓辉, 周新星, 罗海陆. 光束正入射至界面时的自旋-轨道相互作用及其增强. 物理学报, 2020, 69(3): 034202. doi: 10.7498/aps.69.20191218
    [6] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [7] 吕腾博, 张沛, 武瑞涛, 王小力. 弯曲时空中转动对自旋流的影响. 物理学报, 2019, 68(12): 120401. doi: 10.7498/aps.68.20182260
    [8] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射. 物理学报, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [9] 伊丁, 武镇, 杨柳, 戴瑛, 解士杰. 有机分子在铁磁界面处的自旋极化研究. 物理学报, 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [10] 陈俊, 於亚飞, 张智明. 利用信息流方法优化多激发自旋链中的量子态传输. 物理学报, 2015, 64(16): 160305. doi: 10.7498/aps.64.160305
    [11] 邹承役, 吴绍全, 赵国平. 串型耦合双量子点处于自旋阻塞区时磁输运性质的研究. 物理学报, 2013, 62(1): 017201. doi: 10.7498/aps.62.017201
    [12] 姚建明, 杨翀. AB效应对自旋多端输运的影响. 物理学报, 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [13] 李 宏, 王炜路, 公丕锋. 单量子阱的自旋电流. 物理学报, 2007, 56(4): 2405-2408. doi: 10.7498/aps.56.2405
    [14] 桂永胜, 郑国珍, 郭少令, 褚君浩, 汤定元, 陈建新, 李爱珍. 赝形InGaAs/InAlAs渐变异质结中的零磁场自旋分裂. 物理学报, 1999, 48(1): 121-126. doi: 10.7498/aps.48.121
    [15] 张有霆, 陈明. 垂直泵的结构对YIG单晶薄膜的第二级自旋波不稳定性临界场的影响. 物理学报, 1991, 40(6): 1017-1024. doi: 10.7498/aps.40.1017
    [16] 潘少华, 厚美英. 自旋交换碰撞占主导时光泵硷金属原子的电子自旋弛豫. 物理学报, 1984, 33(8): 1177-1181. doi: 10.7498/aps.33.1177
    [17] 倪皖荪. 自旋极化氢原子(H↓)系统中气体超流的可能性及其声学性质. 物理学报, 1983, 32(9): 1227-1232. doi: 10.7498/aps.32.1227
    [18] 韩世莹. 自旋波线宽的测量. 物理学报, 1981, 30(6): 827-831. doi: 10.7498/aps.30.827
    [19] 马本堃. 自旋-晶格弛豫. 物理学报, 1965, 21(7): 1419-1436. doi: 10.7498/aps.21.1419
    [20] 吴式枢. 自旋波理论最近的发展. 物理学报, 1958, 14(3): 233-243. doi: 10.7498/aps.14.233
计量
  • 文章访问数:  3935
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-01
  • 修回日期:  2022-12-12
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-03-05

/

返回文章
返回