搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光束正入射至界面时的自旋-轨道相互作用及其增强

罗慧玲 凌晓辉 周新星 罗海陆

引用本文:
Citation:

光束正入射至界面时的自旋-轨道相互作用及其增强

罗慧玲, 凌晓辉, 周新星, 罗海陆

Spin-orbit interaction of a light beam under normal incidence at a sharp interface and its enhancement

Luo Hui-Ling, Ling Xiao-Hui, Zhou Xin-Xing, Luo Hai-Lu
PDF
HTML
导出引用
  • 光束正入射至均匀突变界面时的自旋-轨道相互作用表现为拓扑荷数为±2的、自旋可控的涡旋相位. 然而, 该涡旋相位的物理来源以及界面的性质在自旋-轨道相互作用过程中起到何种作用, 这些问题还有待解决.首先建立一个简洁的菲涅耳琼斯矩阵来描述这种自旋-轨道相互作用, 并揭示其中的涡旋相位其实是一种贝里(Berry)几何相位, 它来源于光束本身的拓扑结构, 而界面的性质影响自旋-轨道相互作用的转换效率. 一般情况下, 转换效率极低, 限制了其应用. 因此, 基于上述理论, 提出采用光轴平行于界面法线方向的单轴薄层材料, 来极大地增强这种自旋-轨道相互作用.
    The spin-orbit interaction (SOI) of light refers to the mutual conversion and coupling between the spin angular momentum and orbital angular momentum. It is a fundamental effect in optics, and has been widely found in many basic optical processes, such as reflection, refraction, scattering, focusing, and imaging. So it plays an important role in the fields of optics, nanophotonics, and plasmonics, and has great potential applications in precision measurement and detection, information storage and processing, particle manipulation, and various functional photonic devices. Recently, it has been found that a circularly polarized light beam normally passing through an isotropic sharp interface can undergo an SOI process, that is, part of the incident beam experiences a spin-flip and acquires a spin-dependent vortex phase with a topological charge of $ \pm2 $. However, the physical origin of this phase and the role of the interface played in the SOI process are still unclear at present. In this work, a Fresnel Jones matrix is first established to describe the relationship between the incident beam and the transmitted beam, based on which we unveil that the vortex phase is in fact a spin-redirection Berry geometric phase, originating from the topological structure of the beam itself. The properties of the interface affect the conversion efficiency of the SOI. This kind of SOI is very similar to that in the azimuthal Pancharatnam-Berry phase elements. The difference lies in the fact that the Pancharatnam-Berry phase originates from the external anisotropy of the composite material. Generally, the efficiency of this SOI is extremely low, which limits its applications. The existing method of enhancing this SOI employs an isotropic epsilon-near-zero slab, whose maximum efficiency can reach only about 20%. Since the anisotropic medium (such as birefringent uniaxial crystals) has more degrees of freedom, we further point out that the weak SOI can be greatly enhanced by an optically thin uniaxial slab whose optical axis is parallel to the normal direction of the interface. And under certain conditions, the conversion efficiency can reach 100%. Our study not only establishes a simple and convenient full-wave theory for this SOI, but also reveals the relevant underlying physics, and further provides a possible scheme to significantly enhance the SOI.
      通信作者: 凌晓辉, xhling@hnu.edu.cn ; 周新星, xinxingzhou@hunnu.edu.cn
    • 基金项目: 国家级-国家自然科学基金项目(11604087, 11874142, 11604095)
      Corresponding author: Ling Xiao-Hui, xhling@hnu.edu.cn ; Zhou Xin-Xing, xinxingzhou@hunnu.edu.cn
    [1]

    Bliokh K Y, Rodríguez F F J, Nori F, Zayats A V 2015 Nat. Photon. 9 796Google Scholar

    [2]

    Bliokh K Y, Nori F 2015 Phys. Rep. 592 1Google Scholar

    [3]

    Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E 2013 Science 340 724Google Scholar

    [4]

    Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67Google Scholar

    [5]

    O’connor D, Ginzburg P, Rodríguez F F J, Wurtz G A, Zayats A V 2014 Nat. Commun. 5 5327Google Scholar

    [6]

    Pan D, Wei H, Gao L, Xu H X 2016 Phys. Rev. Lett. 117 166803Google Scholar

    [7]

    Ling X H, Zhou X X, Huang K, Liu Y C, Qiu C W, Luo H L, Wen S C 2017 Rep. Prog. Phys. 80 066401Google Scholar

    [8]

    Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M, Ruan Z C 2019 Phys. Rev. Appl. 11 034043Google Scholar

    [9]

    Zhou J X, Qian H L, Chen C F, Zhao J X, Li G R, Wu Q Y, Luo H L, Wen S C, Liu Z W 2019 Proc. Natl. Acad. Sci. USA 116 11137Google Scholar

    [10]

    Onoda M, Murakami S, Nagaosa N 2004 Phys. Rev. Lett. 93 083901Google Scholar

    [11]

    Bliokh K Y, Bliokh Y P 2006 Phys. Rev. Lett. 96 073903Google Scholar

    [12]

    Bliokh K Y, Bliokh Y P 2007 Phys. Rev. E 75 066609Google Scholar

    [13]

    Hosten O, Kwiat P 2008 Science 319 787Google Scholar

    [14]

    Qin Y, Li Y, He H, Gong Q H 2009 Opt. Lett. 34 2551Google Scholar

    [15]

    Luo H L, Zhou X X, Shu W X, Wen S C, Fan D Y 2011 Phys. Rev. A 84 043806Google Scholar

    [16]

    Kong L J, Wang X L, Li S M, Li Y N, Chen J, Gu B, Wang H T 2012 Appl. Phys. Lett. 100 071109Google Scholar

    [17]

    刘金安, 涂佳隆, 卢志利, 吴柏威, 胡琦, 马洪华, 陈欢, 易煦农 2019 物理学报 68 064201Google Scholar

    Liu J A, Tu J L, Lu Z L, Wu B W, Hu Q, Ma H H, Chen H, Yi X N 2019 Acta Phys. Sin. 68 064201Google Scholar

    [18]

    Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E 2011 Nano Lett. 11 2038Google Scholar

    [19]

    Huang L L, Chen X Z, Bai B F, Tan Q F, Jin G F, Zentgraf T, Zhang S 2013 Light: Sci. Appl. 2 e70Google Scholar

    [20]

    Ling X H, Zhou X X, Yi X N, Shu W X, Liu Y C, Chen S Z, Luo H L, Wen S C, Fan D Y 2015 Light: Sci. Appl. 4 e290Google Scholar

    [21]

    Liberman V S, Zel’dovich B Y 1992 Phys. Rev. A 46 5199Google Scholar

    [22]

    Bliokh K Y, Bliokh Y P 2004 Phys. Lett. A 333 181Google Scholar

    [23]

    Bliokh K Y 2009 J. Opt. A 11 094009Google Scholar

    [24]

    Bomzon Z, Kleiner V, Hasman E 2001 Opt. Lett. 26 1424Google Scholar

    [25]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905Google Scholar

    [26]

    Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101Google Scholar

    [27]

    Devlin R C, Ambrosio A, Rubin N A, Balthasar Mueller J P, Capasso F 2018 Science 358 896Google Scholar

    [28]

    Zhao Y Q, Edgar J S, Jeffries G D M, McGloin D, Chiu D T 2007 Phys. Rev. Lett. 99 073901Google Scholar

    [29]

    Bliokh K Y, Ostrovskaya E A, Alonso M A, Rodríguez H O G, Lara D, Dainty C 2011 Opt. Express 19 26132Google Scholar

    [30]

    Khilo N A, Petrova E S, Ryzhevich A A 2001 Quantum Electron. 31 85Google Scholar

    [31]

    Ciattoni A, Cincotti G, Palma C 2003 J. Opt. Soc. Am. A 20 163Google Scholar

    [32]

    Yavorsky M, Brasselet E 2012 Opt. Lett. 37 3810Google Scholar

    [33]

    Ciattoni A, Marini A, Rizza C 2017 Phys. Rev. Lett. 118 104301Google Scholar

    [34]

    Ciattoni A, Rizza C, Lee H W H, Conti C, Marini A 2018 Laser Photonics Rev. 12 1800140Google Scholar

    [35]

    Goodman J W 2005 Introduction to Fourier Optics (Green-woood Village: Roberts and Company Publishers) p55

    [36]

    Bliokh K Y, Gorodetski Y, Kleiner V, Hasman E 2008 Phys. Rev. Lett. 101 030404Google Scholar

    [37]

    Berry M V 1984 Proc. R. Soc. A 392 45Google Scholar

    [38]

    Berry M V 1987 J. Mod. Opt. 34 1401Google Scholar

    [39]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: University Press) p64

    [40]

    Lekner J 1994 Pure Appl. Opt. 3 821Google Scholar

    [41]

    Poddubny A, Iorsh I, Belov P, Kivshar Y 2013 Nat. Photonics 7 958Google Scholar

    [42]

    Ferrari L, Wu C, Lepage D, Zhang X, Liu Z 2015 Prog. Quantum Electron. 40 1Google Scholar

  • 图 1  光束正入射至各向同性的突变界面时SOI的示意图 (a) 左旋圆偏振光束正入射至界面后, 部分光束发生自旋反转变成右旋光, 并获得拓扑荷数为2的涡旋相位(两个小图分别表示一种典型的涡旋光束的强度和相位分布); 注意, 未发生SOI的那部分光束并没有在图中画出; $\left| + \right\rangle $$\left| - \right\rangle $分别表示左、右旋圆偏振; (b) 光束中各平面波分量的自旋与局部坐标的旋转耦合的示意图, 其中圆锥代表光束的角谱, 绿色的箭头线代表任意的两支平面波的波矢, 橙色带箭头的小圆圈表示各平面的偏振矢量在实验室坐标上的投影(均为圆偏振), ${\varOmega _\xi }$为坐标旋转的空间旋转

    Fig. 1.  Schematic illustration of the SOI for a light beam normally impinging onto a sharp isotropic interface. (a) When a left-circularly polarized beam normally passes through the interface, part of the incident beam converts into a right-circularly polarized beam, and carries a vortex phase with a topological charge of 2. Note that the spin-maintained portion is not shown in the picture. $\left| + \right\rangle $ and $\left| - \right\rangle $ denotes the left- and right-handed polarization, respectively. (b) Schematic illustration of rotational coupling between the local coordinates and the spin of the plane wave components within the beam spectra. The cone represents the angular spectrum of the beam. The two green arrows represent the wave vectors of arbitrary two plane waves. The orange circles with arrows indicate the projection of polarization vectors of each plane wave on the laboratory coordinates (all circularly polarized). ${\varOmega _\xi }$ is the spatial coordinate rotation.

    图 2  左旋圆偏振贝塞尔光束正入射至一个界面时, 透射光束的反常模式(a)和寻常模式(b)的归一化光强分布, 其中两个小图分别表示为对应的相位分布, 在计算中, 取入射光束的波长$\lambda = 1$${w_0} = 20\lambda $

    Fig. 2.  Normalized intensity distribution of the abnormal mode (a) and normal mode (b) of transmitted light beam under the normal incidence of a left-handed circularly polarized Bessel beam at a sharp interface. The insets represent the phase distribution of corresponding modes. Here, we take the working wavelength as $\lambda = 1$ and ${w_0} = 20\lambda $.

    图 3  三种放置于自由空间的单层薄膜材料的透射系数, 以及SOI的转换效率$\eta = {\left| {{t_{\rm{TM}}} - {t_{\rm{TE}}}} \right|^2}/4$ (a) $\varepsilon = 2.25$, (b) $\varepsilon = 0.01$, (c) ${\varepsilon _x} = {\varepsilon _y} = 1$${\varepsilon _z} = 0.01$; 计算中, 取入射光束的波长$\lambda = 1$, 三种材料厚度$h = 2\lambda $; (d)和(e)分别是${\vartheta ^{\rm{i}}}$${\varepsilon _z}$, ${\vartheta ^{\rm{i}}}$h同时变化时的转换效率, 在(d)中, 取${\varepsilon _x} = {\varepsilon _y} = 1$, $h = 1\lambda $; 在(e)中, 取${\varepsilon _x} = {\varepsilon _y} = 1$, ${\varepsilon _z} = 0.01$

    Fig. 3.  Transmission coefficients and conversion efficiency ($\eta = {\left| {{t_{\rm{TM}}} - {t_{\rm{TE}}}} \right|^2}/4$) of three optically thin films placed in free space: (a) $\varepsilon = 2.25$, (b) $\varepsilon = 0.01$, (c) ${\varepsilon _x} = {\varepsilon _y} = 1$ and ${\varepsilon _z} = 0.01$, where we take $\lambda = 1$ and $h = 2\lambda $; (d) conversion efficiencies versus ${\vartheta ^{\rm{i}}}$ and ${\varepsilon _z}$ of a uniaxial layer with ${\varepsilon _x} = {\varepsilon _y} = 1$ and $h = 1\lambda $; (e) conversion efficiencies versus ${\vartheta ^{\rm{i}}}$ and h of a uniaxial layer with ${\varepsilon _x} = {\varepsilon _y} = 1$ and ${\varepsilon _z} = 0.01$.

  • [1]

    Bliokh K Y, Rodríguez F F J, Nori F, Zayats A V 2015 Nat. Photon. 9 796Google Scholar

    [2]

    Bliokh K Y, Nori F 2015 Phys. Rep. 592 1Google Scholar

    [3]

    Shitrit N, Yulevich I, Maguid E, Ozeri D, Veksler D, Kleiner V, Hasman E 2013 Science 340 724Google Scholar

    [4]

    Petersen J, Volz J, Rauschenbeutel A 2014 Science 346 67Google Scholar

    [5]

    O’connor D, Ginzburg P, Rodríguez F F J, Wurtz G A, Zayats A V 2014 Nat. Commun. 5 5327Google Scholar

    [6]

    Pan D, Wei H, Gao L, Xu H X 2016 Phys. Rev. Lett. 117 166803Google Scholar

    [7]

    Ling X H, Zhou X X, Huang K, Liu Y C, Qiu C W, Luo H L, Wen S C 2017 Rep. Prog. Phys. 80 066401Google Scholar

    [8]

    Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M, Ruan Z C 2019 Phys. Rev. Appl. 11 034043Google Scholar

    [9]

    Zhou J X, Qian H L, Chen C F, Zhao J X, Li G R, Wu Q Y, Luo H L, Wen S C, Liu Z W 2019 Proc. Natl. Acad. Sci. USA 116 11137Google Scholar

    [10]

    Onoda M, Murakami S, Nagaosa N 2004 Phys. Rev. Lett. 93 083901Google Scholar

    [11]

    Bliokh K Y, Bliokh Y P 2006 Phys. Rev. Lett. 96 073903Google Scholar

    [12]

    Bliokh K Y, Bliokh Y P 2007 Phys. Rev. E 75 066609Google Scholar

    [13]

    Hosten O, Kwiat P 2008 Science 319 787Google Scholar

    [14]

    Qin Y, Li Y, He H, Gong Q H 2009 Opt. Lett. 34 2551Google Scholar

    [15]

    Luo H L, Zhou X X, Shu W X, Wen S C, Fan D Y 2011 Phys. Rev. A 84 043806Google Scholar

    [16]

    Kong L J, Wang X L, Li S M, Li Y N, Chen J, Gu B, Wang H T 2012 Appl. Phys. Lett. 100 071109Google Scholar

    [17]

    刘金安, 涂佳隆, 卢志利, 吴柏威, 胡琦, 马洪华, 陈欢, 易煦农 2019 物理学报 68 064201Google Scholar

    Liu J A, Tu J L, Lu Z L, Wu B W, Hu Q, Ma H H, Chen H, Yi X N 2019 Acta Phys. Sin. 68 064201Google Scholar

    [18]

    Shitrit N, Bretner I, Gorodetski Y, Kleiner V, Hasman E 2011 Nano Lett. 11 2038Google Scholar

    [19]

    Huang L L, Chen X Z, Bai B F, Tan Q F, Jin G F, Zentgraf T, Zhang S 2013 Light: Sci. Appl. 2 e70Google Scholar

    [20]

    Ling X H, Zhou X X, Yi X N, Shu W X, Liu Y C, Chen S Z, Luo H L, Wen S C, Fan D Y 2015 Light: Sci. Appl. 4 e290Google Scholar

    [21]

    Liberman V S, Zel’dovich B Y 1992 Phys. Rev. A 46 5199Google Scholar

    [22]

    Bliokh K Y, Bliokh Y P 2004 Phys. Lett. A 333 181Google Scholar

    [23]

    Bliokh K Y 2009 J. Opt. A 11 094009Google Scholar

    [24]

    Bomzon Z, Kleiner V, Hasman E 2001 Opt. Lett. 26 1424Google Scholar

    [25]

    Marrucci L, Manzo C, Paparo D 2006 Phys. Rev. Lett. 96 163905Google Scholar

    [26]

    Beresna M, Gecevičius M, Kazansky P G, Gertus T 2011 Appl. Phys. Lett. 98 201101Google Scholar

    [27]

    Devlin R C, Ambrosio A, Rubin N A, Balthasar Mueller J P, Capasso F 2018 Science 358 896Google Scholar

    [28]

    Zhao Y Q, Edgar J S, Jeffries G D M, McGloin D, Chiu D T 2007 Phys. Rev. Lett. 99 073901Google Scholar

    [29]

    Bliokh K Y, Ostrovskaya E A, Alonso M A, Rodríguez H O G, Lara D, Dainty C 2011 Opt. Express 19 26132Google Scholar

    [30]

    Khilo N A, Petrova E S, Ryzhevich A A 2001 Quantum Electron. 31 85Google Scholar

    [31]

    Ciattoni A, Cincotti G, Palma C 2003 J. Opt. Soc. Am. A 20 163Google Scholar

    [32]

    Yavorsky M, Brasselet E 2012 Opt. Lett. 37 3810Google Scholar

    [33]

    Ciattoni A, Marini A, Rizza C 2017 Phys. Rev. Lett. 118 104301Google Scholar

    [34]

    Ciattoni A, Rizza C, Lee H W H, Conti C, Marini A 2018 Laser Photonics Rev. 12 1800140Google Scholar

    [35]

    Goodman J W 2005 Introduction to Fourier Optics (Green-woood Village: Roberts and Company Publishers) p55

    [36]

    Bliokh K Y, Gorodetski Y, Kleiner V, Hasman E 2008 Phys. Rev. Lett. 101 030404Google Scholar

    [37]

    Berry M V 1984 Proc. R. Soc. A 392 45Google Scholar

    [38]

    Berry M V 1987 J. Mod. Opt. 34 1401Google Scholar

    [39]

    Born M, Wolf E 1999 Principles of Optics (Cambridge: University Press) p64

    [40]

    Lekner J 1994 Pure Appl. Opt. 3 821Google Scholar

    [41]

    Poddubny A, Iorsh I, Belov P, Kivshar Y 2013 Nat. Photonics 7 958Google Scholar

    [42]

    Ferrari L, Wu C, Lepage D, Zhang X, Liu Z 2015 Prog. Quantum Electron. 40 1Google Scholar

  • [1] 蒋铭阳, 李九生. 弧度与旋转共同诱导相位调控太赫兹超表面. 物理学报, 2025, 74(2): . doi: 10.7498/aps.74.20241465
    [2] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响. 物理学报, 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [3] 邢健崇, 张文静, 杨涛. 玻色-爱因斯坦凝聚中的非正则涡旋态及其动力学. 物理学报, 2023, 72(10): 100306. doi: 10.7498/aps.72.20222289
    [4] 李海鹏, 吴潇, 丁海洋, 辛可为, 王光明. 基于复合超构表面的宽带圆极化双功能器件设计. 物理学报, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [5] 刘全慧, 张梦男, 肖世发, 寻大毛. 三维各向同性谐振子的几何动量分布. 物理学报, 2019, 68(1): 010301. doi: 10.7498/aps.68.20181634
    [6] 施建珍, 许田, 周巧巧, 纪宪明, 印建平. 用波晶片相位板产生角动量可调的无衍射涡旋空心光束. 物理学报, 2015, 64(23): 234209. doi: 10.7498/aps.64.234209
    [7] 饶黄云, 刘义保, 江燕燕, 郭立平, 王资生. 三能级混合态的量子几何相位. 物理学报, 2012, 61(2): 020302. doi: 10.7498/aps.61.020302
    [8] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变. 物理学报, 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [9] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究. 物理学报, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [10] 张霞萍, 刘友文. 强非局域非线性介质中拉盖尔-高斯型光孤子相互作用. 物理学报, 2011, 60(8): 084212. doi: 10.7498/aps.60.084212
    [11] 徐凯, 杨艳芳, 何英, 韩小红, 李春芳. 局域椭圆偏振光束强聚焦性质的研究. 物理学报, 2010, 59(9): 6125-6130. doi: 10.7498/aps.59.6125
    [12] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量. 物理学报, 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [13] 郑力明, 刘颂豪, 王发强. 非马尔可夫环境下原子的几何相位演化. 物理学报, 2009, 58(4): 2430-2434. doi: 10.7498/aps.58.2430
    [14] 马瑞琼, 李永放, 时 坚. 相干瞬态的量子干涉效应和Berry相位. 物理学报, 2008, 57(7): 4083-4090. doi: 10.7498/aps.57.4083
    [15] 郑映鸿, 陈 童, 王 平, 常 哲. 几何相位的伽利略变换性质. 物理学报, 2007, 56(11): 6199-6203. doi: 10.7498/aps.56.6199
    [16] 沈建其, 庄 飞. 螺旋光纤系统中非绝热条件几何相移. 物理学报, 2005, 54(3): 1048-1052. doi: 10.7498/aps.54.1048
    [17] 庄 飞, 沈建其. 双轴各向异性负折射率材料光纤中光子波函数几何相位研究. 物理学报, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
    [18] 胡国琦, 李康. 有磁单极子存在下的Aharnov-Bohm效应. 物理学报, 2002, 51(6): 1208-1213. doi: 10.7498/aps.51.1208
    [19] 朱红毅, 沈建其. 一般三生成元含时系统的精确解. 物理学报, 2002, 51(7): 1448-1452. doi: 10.7498/aps.51.1448
    [20] 盛勇, 蒋刚, 朱正和. 类氢类氦类锂镁离子双电子复合的旁观电子角动量研究. 物理学报, 2002, 51(3): 501-505. doi: 10.7498/aps.51.501
计量
  • 文章访问数:  8571
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-11
  • 修回日期:  2019-10-25
  • 刊出日期:  2020-02-05

/

返回文章
返回