搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用保角变换实现环形光栅的Talbot效应

杨哲宁 乐阳阳 洪煦昊 赵瑞智 陆蓉儿 冯霞 许亚光 袁旭东 张超 秦亦强 朱永元

引用本文:
Citation:

利用保角变换实现环形光栅的Talbot效应

杨哲宁, 乐阳阳, 洪煦昊, 赵瑞智, 陆蓉儿, 冯霞, 许亚光, 袁旭东, 张超, 秦亦强, 朱永元

Realizing Talbot effect of circular grating with conformal transformation

Yang Zhe-Ning, Yue Yang-Yang, Hong Xu-Hao, Zhao Rui-Zhi, Lu Rong-Er, Feng Xia, Xu Ya-Guang, Yuan Xu-Dong, Zhang Chao, Qin Yi-Qiang, Zhu Yong-Yuan
PDF
HTML
导出引用
  • Talbot效应是一种近场自成像效应, 通常只有周期光栅可以产生Talbot效应, 而环形光栅无法产生. 本文通过引入保角变换, 发现可以在环形光栅外部设计适当的折射率渐变层介质, 使得其中也能够产生严格的Talbot效应, 并计算了对应的自成像半径表达式. 本文利用FDTD软件分别将一个环形光栅放置在真空中以及人工设计的折射率渐变层中进行了模拟, 并对二者的结果进行了比较分析, 发现这种折射率渐变层介质确实对点光源入射的环形光栅的自成像情况有着很好的改善. 希望这一工作能够推广Talbot效应的应用范围.
    The Talbot effect is a near-field diffraction effect that occurs in periodic structures. In a circular periodic structure with a point source as incident light, it has been found that there is no self-imaging effect of the grating at a certain propagation distance. In this paper, we combine the conformal transformation with the Talbot effect and work out a special medium in the physical space, which allows the circular grating to have a Talbot effect within it. The refractive index distribution generated by conformal transformation is calculated and the corresponding self-imaging radius expression is obtained. Lumerical product is used for simulation verification, and the applicable condition of the method is summarized. We separately carry out the simulations of a circular grating with and without the designed medium. Light field distributions in the two simulations differ from each other. The light field in the second situation shares more similarities with the light field of a plane grating than the first simulation. What is more, in the second situation, we can work out a certain Talbot radius, and the light field distribution at the calculated Talbot radius is quite similar to that at the circular grating. But for the first situation, we cannot calculate a certain Talbot radius and can obtain only the radius of the ring with highest self-imaging accuracy by comparing light field at each distance with the grating structure. We find that the small period of the circular grating we used in the second situation makes the light field at Talbot radius furcate. So we carry out a third simulation of a circular grating with a large period compared with the incident wavelength. The self-imaging result matches the grating structure quite well. However, there are some limits in this method. According to the conformal transformation, the refractive index near the center tends to be infinite, so we have to remove the medium near the center. Also, when the radius is big enough, refractive index there can be smaller than 1, so the Talbot effect should happen within this radius. In conclusion, we show that the transformation optics can be introduced into the self-imaging of circular gratings, and thus greatly expanding the range of applications for the Talbot effect.
      通信作者: 张超, zhch@nju.edu.cn ; 秦亦强, yqqin@nju.edu.cn ; 朱永元, yyzhu@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874214, 11774165, 11574146)和江苏省自然科学基金(批准号: BK20150563)资助的课题
      Corresponding author: Zhang Chao, zhch@nju.edu.cn ; Qin Yi-Qiang, yqqin@nju.edu.cn ; Zhu Yong-Yuan, yyzhu@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874214, 11774165, 11574146) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150563)
    [1]

    Talbot H F 1836 Philos. Mag. 9 401

    [2]

    Rayleigh F R S 1881 Philos. Mag. 11 196Google Scholar

    [3]

    Yashiro W, Harasse S, Takeuchi A, Suzuki Y, Momose A 2010 Phys. Rev. A 82 043822

    [4]

    Zhang J, Chen Y 2015 Int. J. Nanotechnol. 12 917

    [5]

    周波, 陈云琳, 黎远安, 李海伟 2010 物理学报 59 1816Google Scholar

    Zhou B, Chen Y L, Li Y A, Li H W 2010 Acta Phys. Sin. 59 1816Google Scholar

    [6]

    范天伟, 陈云琳, 张进宏 2013 物理学报 62 094216Google Scholar

    Fan T W, Chen Y L, Zhang J H 2013 Acta Phys. Sin. 62 094216Google Scholar

    [7]

    Côme Schnébelin, Chatellus H G D 2018 Opt. Lett. 43 1467Google Scholar

    [8]

    Candelas P, Fuster J M, Pérez-López S, Uris A, Rubio C 2019 Ultrasonics 94 281Google Scholar

    [9]

    Morozov A N, Krikunova M P, Skuibin B G, Smirnov E V 2017 JEPT Letters 106 23

    [10]

    Kohn V G 2018 J. Synchrot. Radiat. 25 425Google Scholar

    [11]

    Kim J M, Cho I H, Lee S Y, Kang H C, Conley R, Liu C A, Macrander A T, Noh D Y 2010 Opt. Express 18 24975Google Scholar

    [12]

    Li C, Zhou T, Zhai Y, Yue X, Xiang J, Yang S, Wei X, Chen X 2017 Phys. Rev. A 95 033821Google Scholar

    [13]

    Li C, Zhou T, Xiang J, Zhai Y, Yue X, Yang S, Wei X, Chen X 2017 Chin. Phys. Lett. 34 084207Google Scholar

    [14]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [15]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [16]

    刘一超 2016 博士学位论文 (杭州: 浙江大学)

    Liu Y C 2016 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [17]

    徐林 2016 硕士学位论文 (苏州: 苏州大学)

    Xu L 2016 M. S. Thesis (Suzhou: Suzhou University) (in Chinese)

    [18]

    Wang X Y, Chen H Y, Liu H, Xu L, Sheng C, Zhu S N 2017 Phys. Rev. Lett. 119 033902Google Scholar

    [19]

    Torcal-Milla F J, Sanchez-Brea L M, Salgado-Remacha F J, Bernabeu E 2010 Opt. Commun. 283 3869Google Scholar

    [20]

    Zhang W, Wang J H, Cui Y W, Teng S Y 2015 Opt. Commun. 341 245Google Scholar

    [21]

    乐阳阳 2016 硕士学位论文 (南京: 南京大学)

    Yue Y Y 2016 M. S. Thesis (Nanjing: Nanjing University) (in Chinese)

    [22]

    Xu L, Chen H Y 2015 Nat. Photon. 9 15Google Scholar

  • 图 1  点光源入射的环形光栅衍射图解

    Fig. 1.  Ring grating with a point source of incident light.

    图 2  Lumerical模拟结果(光栅内的光场已去除)

    Fig. 2.  Simulation results (light field inside the grating has been removed).

    图 3  虚拟空间(左)和物理空间(右)示意图

    Fig. 3.  Schematic diagram of virtual space(left) and physical space(right).

    图 4  对于内径为10 μm, 外径为10.1 μm, m = 50, $m'$ = 50 μm的光栅, (a) Lumerical模拟结果(光栅内的光场已去除), 以及(b)自成像光场(短划线)与光栅处光场(实线)的对比

    Fig. 4.  For the grating with the inner diameter of 10 μm and the outter diameter of 10.1 μm (m=50, $m'$ = 50 μm), (a) simulation results (light field inside the grating has been removed), and (b) comparison of self-image (dash line) and the light field at r = 10.1 μm (solid line).

    图 5  对于内径为50 μm, 外径为50.1 μm, m=120, $m'$ = 300 μm的光栅, (a) Lumerical模拟结果(光栅内的光场已去除), 以及(b)自成像光场(虚线)与光栅处光场(实线)的对比

    Fig. 5.  For the grating with the inner diameter of 50 μm and the outter diameter of 50.1 μm (m=120, $m'$ = 300 μm), (a) simulation results (light field inside the grating has been removed), and (b) comparison of self-image (dash line) and the light field at r = 10.1 μm (solid line).

  • [1]

    Talbot H F 1836 Philos. Mag. 9 401

    [2]

    Rayleigh F R S 1881 Philos. Mag. 11 196Google Scholar

    [3]

    Yashiro W, Harasse S, Takeuchi A, Suzuki Y, Momose A 2010 Phys. Rev. A 82 043822

    [4]

    Zhang J, Chen Y 2015 Int. J. Nanotechnol. 12 917

    [5]

    周波, 陈云琳, 黎远安, 李海伟 2010 物理学报 59 1816Google Scholar

    Zhou B, Chen Y L, Li Y A, Li H W 2010 Acta Phys. Sin. 59 1816Google Scholar

    [6]

    范天伟, 陈云琳, 张进宏 2013 物理学报 62 094216Google Scholar

    Fan T W, Chen Y L, Zhang J H 2013 Acta Phys. Sin. 62 094216Google Scholar

    [7]

    Côme Schnébelin, Chatellus H G D 2018 Opt. Lett. 43 1467Google Scholar

    [8]

    Candelas P, Fuster J M, Pérez-López S, Uris A, Rubio C 2019 Ultrasonics 94 281Google Scholar

    [9]

    Morozov A N, Krikunova M P, Skuibin B G, Smirnov E V 2017 JEPT Letters 106 23

    [10]

    Kohn V G 2018 J. Synchrot. Radiat. 25 425Google Scholar

    [11]

    Kim J M, Cho I H, Lee S Y, Kang H C, Conley R, Liu C A, Macrander A T, Noh D Y 2010 Opt. Express 18 24975Google Scholar

    [12]

    Li C, Zhou T, Zhai Y, Yue X, Xiang J, Yang S, Wei X, Chen X 2017 Phys. Rev. A 95 033821Google Scholar

    [13]

    Li C, Zhou T, Xiang J, Zhai Y, Yue X, Yang S, Wei X, Chen X 2017 Chin. Phys. Lett. 34 084207Google Scholar

    [14]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [15]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [16]

    刘一超 2016 博士学位论文 (杭州: 浙江大学)

    Liu Y C 2016 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [17]

    徐林 2016 硕士学位论文 (苏州: 苏州大学)

    Xu L 2016 M. S. Thesis (Suzhou: Suzhou University) (in Chinese)

    [18]

    Wang X Y, Chen H Y, Liu H, Xu L, Sheng C, Zhu S N 2017 Phys. Rev. Lett. 119 033902Google Scholar

    [19]

    Torcal-Milla F J, Sanchez-Brea L M, Salgado-Remacha F J, Bernabeu E 2010 Opt. Commun. 283 3869Google Scholar

    [20]

    Zhang W, Wang J H, Cui Y W, Teng S Y 2015 Opt. Commun. 341 245Google Scholar

    [21]

    乐阳阳 2016 硕士学位论文 (南京: 南京大学)

    Yue Y Y 2016 M. S. Thesis (Nanjing: Nanjing University) (in Chinese)

    [22]

    Xu L, Chen H Y 2015 Nat. Photon. 9 15Google Scholar

  • [1] 李尉, 代京京, 温丛阳, 宗梦雅, 李胜南, 王智勇. 利用Gyrator正则变换实现环形激光阵列的Talbot效应. 物理学报, 2023, 72(5): 054208. doi: 10.7498/aps.72.20222412
    [2] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像. 物理学报, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [3] 荣锋, 谢艳娜, 邰雪凤, 耿磊. 双能X射线光栅相衬成像的研究. 物理学报, 2017, 66(1): 018701. doi: 10.7498/aps.66.018701
    [4] 赵绚, 刘晨, 马会丽, 冯帅. 基于波导间能量耦合效应的光子晶体频段选择与能量分束器. 物理学报, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [5] 杜杨, 刘鑫, 雷耀虎, 黄建衡, 赵志刚, 林丹樱, 郭金川, 李冀, 牛憨笨. X射线光栅微分相衬成像视场分析. 物理学报, 2016, 65(5): 058701. doi: 10.7498/aps.65.058701
    [6] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟. 基于环形抽运光的红外超分辨显微成像方法. 物理学报, 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [7] 佟曼, 范天伟, 陈云琳. 畴腐蚀掺镁铌酸锂可调阵列光分束器的研究. 物理学报, 2016, 65(1): 014215. doi: 10.7498/aps.65.014215
    [8] 李世松, 张钟华, 赵伟, 黄松岭, 傅壮. 一种用保角变换求解带电Kelvin电容器边缘效应所产生静电力的解析模型. 物理学报, 2015, 64(6): 060601. doi: 10.7498/aps.64.060601
    [9] 马长链, 黄永清, 段晓峰, 任晓敏, 王琦, 王俊, 张霞, 蔡世伟. 一种设计环形汇聚光栅反射镜的新方法. 物理学报, 2014, 63(24): 240702. doi: 10.7498/aps.63.240702
    [10] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像. 物理学报, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [11] 范天伟, 陈云琳, 张进宏. 基于Talbot效应的掺镁铌酸锂二维六角位相阵列光栅的研究. 物理学报, 2013, 62(9): 094216. doi: 10.7498/aps.62.094216
    [12] 程治明, 吴逢铁, 张前安, 郑维涛. 自成像局域空心光束产生的新方法及粒子俘获. 物理学报, 2012, 61(9): 094201. doi: 10.7498/aps.61.094201
    [13] 江群, 寿倩, 郑亚建, 梁炎斌, 胡巍, 郭旗. 非局域空间光孤子在矩形边界铅玻璃中偏转研究. 物理学报, 2010, 59(1): 329-335. doi: 10.7498/aps.59.329
    [14] 周波, 陈云琳, 黎远安, 李海伟. 基于Talbot效应的可调位相差二维六角位相阵列器的理论研究和数值模拟. 物理学报, 2010, 59(3): 1816-1822. doi: 10.7498/aps.59.1816
    [15] 肖玲, 程小劲, 徐剑秋. 分数自成像平面波导的光束组束. 物理学报, 2009, 58(6): 3870-3876. doi: 10.7498/aps.58.3870
    [16] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法. 物理学报, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [17] 薛力芳, 赵启大, 刘建国, 郭 团, 黄桂岭, 刘丽辉. 基于圆环形薄壁截面梁的光纤光栅传感研究. 物理学报, 2006, 55(6): 2804-2808. doi: 10.7498/aps.55.2804
    [18] 王淮生. 啁啾超短脉冲光波照射下光栅Talbot效应的研究. 物理学报, 2005, 54(12): 5688-5691. doi: 10.7498/aps.54.5688
    [19] 白占武. 非平行导线型边界下Maxwell-Chern-Simons场的Casimir效应. 物理学报, 2004, 53(8): 2472-2477. doi: 10.7498/aps.53.2472
    [20] 巫颐秀, 林一鸣. 光栅成像与Lau效应. 物理学报, 1986, 35(6): 779-787. doi: 10.7498/aps.35.779
计量
  • 文章访问数:  9537
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 修回日期:  2019-10-10
  • 刊出日期:  2020-02-05

/

返回文章
返回