搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X射线光栅微分相衬成像视场分析

杜杨 刘鑫 雷耀虎 黄建衡 赵志刚 林丹樱 郭金川 李冀 牛憨笨

引用本文:
Citation:

X射线光栅微分相衬成像视场分析

杜杨, 刘鑫, 雷耀虎, 黄建衡, 赵志刚, 林丹樱, 郭金川, 李冀, 牛憨笨

Quantitative analysis of the field of view for X-ray differential phase contrast imaging

Du Yang, Liu Xin, Lei Yao-Hu, Huang Jian-Heng, Zhao Zhi-Gang, Lin Dan-Ying, Guo Jin-Chuan, Li Ji, Niu Han-Ben
PDF
导出引用
  • X射线光栅微分相衬成像对由轻元素构成的物质的内部探测具有传统吸收成像无法比拟的优势, 尤其在癌症的早期诊断和轻元素材料及器件的无损检测等领域应用潜力巨大. 大视场成像是影响该技术从实验室走向实际应用的重要因素. 针对大视场成像的客观需求, 基于菲涅耳衍射原理和光栅结构特征, 建立了量化物理模型用于分析影响成像视场的因素, 提出了实现大成像视场的有效途径, 为未来大视场光栅微分相衬成像方法的设计和应用提供理论依据.
    Grating-based X-ray differential phase contrast imaging provides excellent image contrast for low-Z objects that cannot be acquired by conventional X-ray imaging, which has great potential applications in the early diagnosis of cancer and non-destructive detections of low-Z materials and devices. Large field of view imaging is a crucial factor for this technology from the laboratory to practical application. For the objective need of large field of view, on the basis of the Fresnel diffraction theory and the structure characteristics of gratings, we establish a quantitative physical model to analyze the factors that affect the imaging field of view and give a feasible way for large imaging field of view. This work provides a theoretical basis for the large field of view grating-based X-ray differential phase contrast imaging in the future.
      通信作者: 李冀, liji@szu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 11404221, 11074172)、中国博士后面上基金(批准号: 2014M562204)、中国博士后科学基金特别资助(批准号: 2015T80914)、深圳市科创委基础研究项目基金(批准号: JCYJ20150525092941019)、国家自然科学基金科学仪器基础研究专款(批准号: 61227802)和国家重点基础研究项目特别基金(批准号: 2012CB825802)资助的课题.
      Corresponding author: Li Ji, liji@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404221, 11074172), the China Postdoctoral Science Foundation (Grant No. 2014M562204), the Special Fund for China Postdoctoral Science Foundation (Grant No. 2015T80914), the Science and Technology Innovation Commission of Shenzhen, China (Grant No. JCYJ20150525092941019), the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 61227802), and the National Key Basic Research Special Foundation of China (NKBRSFC) (Grant No. 2012CB825802).
    [1]

    Momose A, Fukuda J 1995 Med. Phys. 22 375

    [2]

    Bonse U, Hart M 1965 Appl. Phys. Lett. 6 155

    [3]

    Hosoya S, Ando M 1971 Phys. Rev. Lett. 26 321

    [4]

    Momose A, Takeda T, Itai Y, Hirano K 1996 Nat. Med. 2 473

    [5]

    Davis T J, Gao D C, Gureyev T E, Stevenson A W, Wilkins S W 1995 Nat. 373 595

    [6]

    Chapman D, Thomlinson W, Johnston R E, Washburn D, Pisano E, Gmr N, Zhong Z, Menk R, Arfelli F, Sayers D 1997 Phys. Med. Biol. 42 2015

    [7]

    Ingal I V, Beliaevskaya E A 1995 J. Phys. D: Appl. Phys. 28 2314

    [8]

    Wilkins S W, Gureyev T E, Gao D C, Pogany A, Stevenson A W 1996 Nat. Lett. 384 335

    [9]

    David C, Nöhammer B, Solak H H, Ziegler E 2002 Appl. Phys. Lett. 81 3287

    [10]

    Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y 2003 Jpn. J. Appl. Phys. 42 L866

    [11]

    Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258

    [12]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, Grnzweig C, David C 2008 Nat. Mat. 7 134

    [13]

    Du Y, Liu X, Huang J H, Lei Y H, Zhao Z G, Lin D Y, Guo J C, Li J, Niu H B 2015 Opt. Express 19 12712

    [14]

    Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010 Proc. Natl. Acad. Sci. 107 13576

    [15]

    Du Y, Lei Y H, Liu X, Guo J C, Niu H B 2013 Acta Phys. Sin. 62 068702 (in Chinese) [杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨 2013 物理学报 62 068702]

    [16]

    Kottler C, Pfeiffer F, Bunk O, Grunzweig C, Bruder J, Kaufmann R, Tlustos L, Walt H, Briod I, Weitkamp T, David C 2007 Phys. Status. Solidi. A 204 2728

    [17]

    Donath T, Pfeiffer F, Bunk O, Grunzweig C, Hempel E, Popescu S, Vock P, David C 2010 Invest. Radiol. 45 445

    [18]

    Du Y, Liu X, Lei Y H, Guo J C, Niu H B 2011 Opt. Express 19 22669

    [19]

    Momose A, Yashiro W, Kido K, Kiyohara J, Makifuchi C, Ito T, Nagatsuka S, Honda C, Noda D, Hattori T, Endo T, Nagashima M, Tanaka J 2014 Phil. Trans. R. Soc. A 372 20130023

    [20]

    Revol V, Kottler C, Kaufmann R, Straumann U, Urban C 2010 Rev. Sci. Instrum. 81 073709

    [21]

    Modregger P, Pinzer B R, Thring T, Rutishauser S, David C, Stampanoni M 2011 Opt. Express 19 18324

    [22]

    Huang J H, Du Y, Lei Y H, Liu X, Guo J C, Niu H B 2014 Acta Phys. Sin. 63 168702 (in Chinese) [黄建衡, 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨 2014 物理学报 63 168702]

    [23]

    Noda D, Tsujii H, Takahashi N, Hattori T 2009 J. Electrochem. Soc. 156 H299

    [24]

    David C, Bruder J, Rohbeck T, Grnzweig C, Kottler C, Diaz A, Bunk O, Pfeiffer F 2007 Microelectron. Eng. 84 1172

    [25]

    Liu X, Lei Y H, Zhao Z G, Guo J C, Niu H B 2010 Acta Phys. Sin. 59 6927 (in Chinese) [刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨 2010 物理学报 59 6927]

    [26]

    Thuering T, Modregger P, Grund T, Kenntner J, David C, Stampanoni M 2011 Appl. Phys. Lett. 99 041111

    [27]

    Du Y, Huang J H, Lin D Y, Niu H B 2012 Anal. Bioanal. Chem. 404 793

  • [1]

    Momose A, Fukuda J 1995 Med. Phys. 22 375

    [2]

    Bonse U, Hart M 1965 Appl. Phys. Lett. 6 155

    [3]

    Hosoya S, Ando M 1971 Phys. Rev. Lett. 26 321

    [4]

    Momose A, Takeda T, Itai Y, Hirano K 1996 Nat. Med. 2 473

    [5]

    Davis T J, Gao D C, Gureyev T E, Stevenson A W, Wilkins S W 1995 Nat. 373 595

    [6]

    Chapman D, Thomlinson W, Johnston R E, Washburn D, Pisano E, Gmr N, Zhong Z, Menk R, Arfelli F, Sayers D 1997 Phys. Med. Biol. 42 2015

    [7]

    Ingal I V, Beliaevskaya E A 1995 J. Phys. D: Appl. Phys. 28 2314

    [8]

    Wilkins S W, Gureyev T E, Gao D C, Pogany A, Stevenson A W 1996 Nat. Lett. 384 335

    [9]

    David C, Nöhammer B, Solak H H, Ziegler E 2002 Appl. Phys. Lett. 81 3287

    [10]

    Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y 2003 Jpn. J. Appl. Phys. 42 L866

    [11]

    Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258

    [12]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, Grnzweig C, David C 2008 Nat. Mat. 7 134

    [13]

    Du Y, Liu X, Huang J H, Lei Y H, Zhao Z G, Lin D Y, Guo J C, Li J, Niu H B 2015 Opt. Express 19 12712

    [14]

    Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010 Proc. Natl. Acad. Sci. 107 13576

    [15]

    Du Y, Lei Y H, Liu X, Guo J C, Niu H B 2013 Acta Phys. Sin. 62 068702 (in Chinese) [杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨 2013 物理学报 62 068702]

    [16]

    Kottler C, Pfeiffer F, Bunk O, Grunzweig C, Bruder J, Kaufmann R, Tlustos L, Walt H, Briod I, Weitkamp T, David C 2007 Phys. Status. Solidi. A 204 2728

    [17]

    Donath T, Pfeiffer F, Bunk O, Grunzweig C, Hempel E, Popescu S, Vock P, David C 2010 Invest. Radiol. 45 445

    [18]

    Du Y, Liu X, Lei Y H, Guo J C, Niu H B 2011 Opt. Express 19 22669

    [19]

    Momose A, Yashiro W, Kido K, Kiyohara J, Makifuchi C, Ito T, Nagatsuka S, Honda C, Noda D, Hattori T, Endo T, Nagashima M, Tanaka J 2014 Phil. Trans. R. Soc. A 372 20130023

    [20]

    Revol V, Kottler C, Kaufmann R, Straumann U, Urban C 2010 Rev. Sci. Instrum. 81 073709

    [21]

    Modregger P, Pinzer B R, Thring T, Rutishauser S, David C, Stampanoni M 2011 Opt. Express 19 18324

    [22]

    Huang J H, Du Y, Lei Y H, Liu X, Guo J C, Niu H B 2014 Acta Phys. Sin. 63 168702 (in Chinese) [黄建衡, 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨 2014 物理学报 63 168702]

    [23]

    Noda D, Tsujii H, Takahashi N, Hattori T 2009 J. Electrochem. Soc. 156 H299

    [24]

    David C, Bruder J, Rohbeck T, Grnzweig C, Kottler C, Diaz A, Bunk O, Pfeiffer F 2007 Microelectron. Eng. 84 1172

    [25]

    Liu X, Lei Y H, Zhao Z G, Guo J C, Niu H B 2010 Acta Phys. Sin. 59 6927 (in Chinese) [刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨 2010 物理学报 59 6927]

    [26]

    Thuering T, Modregger P, Grund T, Kenntner J, David C, Stampanoni M 2011 Appl. Phys. Lett. 99 041111

    [27]

    Du Y, Huang J H, Lin D Y, Niu H B 2012 Anal. Bioanal. Chem. 404 793

计量
  • 文章访问数:  1924
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-10
  • 修回日期:  2015-11-29
  • 刊出日期:  2016-03-05

X射线光栅微分相衬成像视场分析

  • 1. 深圳大学光电工程学院, 光电子器件与系统(教育部、广东省)重点实验室, 深圳 518060
  • 通信作者: 李冀, liji@szu.edu.cn
    基金项目: 

    国家自然科学基金 (批准号: 11404221, 11074172)、中国博士后面上基金(批准号: 2014M562204)、中国博士后科学基金特别资助(批准号: 2015T80914)、深圳市科创委基础研究项目基金(批准号: JCYJ20150525092941019)、国家自然科学基金科学仪器基础研究专款(批准号: 61227802)和国家重点基础研究项目特别基金(批准号: 2012CB825802)资助的课题.

摘要: X射线光栅微分相衬成像对由轻元素构成的物质的内部探测具有传统吸收成像无法比拟的优势, 尤其在癌症的早期诊断和轻元素材料及器件的无损检测等领域应用潜力巨大. 大视场成像是影响该技术从实验室走向实际应用的重要因素. 针对大视场成像的客观需求, 基于菲涅耳衍射原理和光栅结构特征, 建立了量化物理模型用于分析影响成像视场的因素, 提出了实现大成像视场的有效途径, 为未来大视场光栅微分相衬成像方法的设计和应用提供理论依据.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回