搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双能X射线光栅相衬成像的研究

荣锋 谢艳娜 邰雪凤 耿磊

引用本文:
Citation:

双能X射线光栅相衬成像的研究

荣锋, 谢艳娜, 邰雪凤, 耿磊

Research on dual energy grating based X-ray phase contrast imaging

Rong Feng, Xie Yan-Na, Tai Xue-Feng, Geng Lei
PDF
导出引用
  • X射线光栅相衬成像存在系统复杂、成像效率低、步进精度要求高、光栅加工难度大等问题.本文设计了一种双能阵列X射线源和双能分析光栅,并应用于X射线光栅相衬成像,提出了一种双能X射线光栅相衬成像系统,阐述了该成像系统的成像原理和相位信息提取方法.提出的成像系统不需要精密步进平台,精简了成像系统,避免了步进误差导致的成像质量降低问题;两次曝光就可以成像,提高了成像效率;双能阵列X射线源、双能分析光栅的应用避免了源光栅、分析光栅难以加工的问题.对提出的成像系统及其相位提取方法进行了仿真,仿真结果显示成像系统可以正常成像,提取到的检测样本的X射线相衬成像相位一阶导数分布与相关文献实验所得结果一致.
    There exist some problems in a grating-based X-ray differential phase contrast imaging system, such as complex imaging system, low imaging efficiency and high requirements for step precision. The phase information extraction method of imaging system has been developed into an existing two-stepping phase shift method from the original phase stepping method, which improves the imaging efficiency and reduces the imaging radiation dose and imaging time. However, the method of two-stepping phase shift still needs to move the grating, and the requirement for accuracy of the step position is also very high. According to the problems mentioned above, in this paper we propose a dual energy multi-line X-ray source and a dual energy analysis grating. The dual energy multi-line X-ray source can emit two different levels of X-ray structure light, which can replace the X-ray source and source grating. The dual energy analysis grating is composed of two different types of scintillator materials, which are in staggered distribution. One is scintillator material that can transform high energy X-ray into visible light, and the other one can convert low energy X-ray into visible light. The dual energy analysis grating can replace traditional analysis grating and the conversion screen of X-ray CCD detector. By using the dual energy multi-line X-ray source and dual energy analysis grating in grating-based X-ray differential phase contrast imaging system, a dual energy grating-based X-ray phase contrast imaging system is proposed in this paper. In addition, in this paper we show the structure and imaging principle of the imaging system. The imaging system can achieve high and low energy X-ray imaging without moving grating. Two levels of X-ray imaging are equivalent to the analysis grating displacement π phase, which is in line with the traditional two-stepping method of two image phase shift requirements. Therefore, after the normalization processing of the two kinds of energies, the phase information can be extracted by the traditional two-stepping phase shift method. In order to validate the correctnesses of the imaging principle of the proposed imaging system and extraction method of phase information, the imaging system is simulated. The simulation is performed on the assumption that an X-ray beam passes through a polymethyl methacrylate sphere as a phase specimen, and the method is adopted by using the proposed dual energy X-ray about left and right lumbar imaging to extract phase information. The simulation result shows that the imaging system can realize normal imaging, and the first-order derivative distribution of the sphere phase extracted by the dual energy X-ray method is consistent with the experimental result.
      通信作者: 荣锋, shusheng677@163.com
    • 基金项目: 国家自然科学基金青年基金(批准号:61405144)、天津市科委青年基金(批准号:15JCQNJC42100)和天津市科技特派员项目(批准号:15JCTPJC56300)资助的课题.
      Corresponding author: Rong Feng, shusheng677@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No. 61405144), the Young Scientists Fund of the Tianjin Municipal Science and Technology Commission, China(Grant No. 15JCQNJC 42100), and the Tianjin Science and Technology Commissioner Project, China(Grant No. 15JCTPJC56300).
    [1]

    Momose A, Fukuda J 1995 Med. Phys. 22 375

    [2]

    David C, Nöhammer B, Solak H H, Ziegler E 2002 Appl. Phys. Lett. 81 3287

    [3]

    Schofield M A, Zhua Y 2003 Opt. Lett. 28 1194

    [4]

    Wilkins S W, Gureyev T E, Gao D, Pogany A, Stevenson W 1996 Nature 384 335

    [5]

    Pogany A, Gao D, Wilkins S W 1997 Rev. Sci. Insirum. 68 2774

    [6]

    Zanette I, Weitkamp T, Donath T, Rutishauser S, David C 2010 Phys. Rev. Lett. 105 248102

    [7]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, Grnzweig C, David C 2008 Nat. Mat. 7 134

    [8]

    Thuering T, Modregger P, Grund T, Kenntner J, David C, Stampanoni M 2011 Appl. Phys. Lett. 99 041111

    [9]

    Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258

    [10]

    Revol V, Kottler C, Kaufmann R, Straumann U, Urban C 2010 Rev. Sci. Instrum. 81 073709

    [11]

    Chen B, Zhu P P, Liu Y J, Wang J Y, Yuan Q X, Huang W X, Ming H, Wu Z Y 2008 Acta Phys. Sin. 57 1576 (in Chinese)[陈博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明海, 吴自玉2008物理学报57 1576]

    [12]

    Liu X, Lei Y H, Zhao Z G, Guo J C, Niu H B 2010 Acta Phys. Sin. 59 6927 (in Chinese)[刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨2010物理学报59 6927]

    [13]

    Li J, Liu W J, Zhu P P, Sun Y 2012 Nucl. Instr. Meth. Phys. Res. A 691 86

    [14]

    Du Y, Huang J H, Lin D Y, Niu H B 2012 Anal. Bioanal. Chem. 404 793

    [15]

    Bennett E, Kopace R, Stein A, Wen H 2010 Med. Phys. 37 6047

    [16]

    Andre Y, Martin B, Guillaume P, Andreas M, Thomas B, Johannes W, Arne T, Markus S, Jan M, Danays K, Maximilian A, Juergen M, Pfeiffer F 2014 Opt. Express 22 547

    [17]

    Christian K, Vincent R, Rolf K, Claus U 2010 Opt. Lett. 35 1932

    [18]

    Li T T, Li H, Diao L H 2012 Appl. Phys. Lett. 101 091108

    [19]

    Stutman D, Finkenthal M 2012 Appl. Phys. Lett. 101 091108

  • [1]

    Momose A, Fukuda J 1995 Med. Phys. 22 375

    [2]

    David C, Nöhammer B, Solak H H, Ziegler E 2002 Appl. Phys. Lett. 81 3287

    [3]

    Schofield M A, Zhua Y 2003 Opt. Lett. 28 1194

    [4]

    Wilkins S W, Gureyev T E, Gao D, Pogany A, Stevenson W 1996 Nature 384 335

    [5]

    Pogany A, Gao D, Wilkins S W 1997 Rev. Sci. Insirum. 68 2774

    [6]

    Zanette I, Weitkamp T, Donath T, Rutishauser S, David C 2010 Phys. Rev. Lett. 105 248102

    [7]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, Grnzweig C, David C 2008 Nat. Mat. 7 134

    [8]

    Thuering T, Modregger P, Grund T, Kenntner J, David C, Stampanoni M 2011 Appl. Phys. Lett. 99 041111

    [9]

    Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258

    [10]

    Revol V, Kottler C, Kaufmann R, Straumann U, Urban C 2010 Rev. Sci. Instrum. 81 073709

    [11]

    Chen B, Zhu P P, Liu Y J, Wang J Y, Yuan Q X, Huang W X, Ming H, Wu Z Y 2008 Acta Phys. Sin. 57 1576 (in Chinese)[陈博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明海, 吴自玉2008物理学报57 1576]

    [12]

    Liu X, Lei Y H, Zhao Z G, Guo J C, Niu H B 2010 Acta Phys. Sin. 59 6927 (in Chinese)[刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨2010物理学报59 6927]

    [13]

    Li J, Liu W J, Zhu P P, Sun Y 2012 Nucl. Instr. Meth. Phys. Res. A 691 86

    [14]

    Du Y, Huang J H, Lin D Y, Niu H B 2012 Anal. Bioanal. Chem. 404 793

    [15]

    Bennett E, Kopace R, Stein A, Wen H 2010 Med. Phys. 37 6047

    [16]

    Andre Y, Martin B, Guillaume P, Andreas M, Thomas B, Johannes W, Arne T, Markus S, Jan M, Danays K, Maximilian A, Juergen M, Pfeiffer F 2014 Opt. Express 22 547

    [17]

    Christian K, Vincent R, Rolf K, Claus U 2010 Opt. Lett. 35 1932

    [18]

    Li T T, Li H, Diao L H 2012 Appl. Phys. Lett. 101 091108

    [19]

    Stutman D, Finkenthal M 2012 Appl. Phys. Lett. 101 091108

  • [1] 姚春霞, 何其利, 张锦, 付天宇, 吴朝, 王山峰, 黄万霞, 袁清习, 刘鹏, 王研, 张凯. 免分析光栅一次曝光相位衬度成像方法. 物理学报, 2021, 70(2): 028701. doi: 10.7498/aps.70.20201170
    [2] 杨君, 吴浩, 罗琨皓, 郭金川, 宗方轲. 抑制傅里叶变换法恢复的X射线相衬像中的伪影. 物理学报, 2021, 70(10): 104101. doi: 10.7498/aps.70.20201781
    [3] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像. 物理学报, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [4] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像. 物理学报, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [5] 杜杨, 刘鑫, 雷耀虎, 黄建衡, 赵志刚, 林丹樱, 郭金川, 李冀, 牛憨笨. X射线光栅微分相衬成像视场分析. 物理学报, 2016, 65(5): 058701. doi: 10.7498/aps.65.058701
    [6] 黄建衡, 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨. 硬X射线微分相衬成像的噪声特性分析. 物理学报, 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [7] 陈晓虎, 王晓方, 张巍巍, 汪文慧. 相位型波带板应用于大尺度X射线源成像的分析与模拟. 物理学报, 2013, 62(1): 015208. doi: 10.7498/aps.62.015208
    [8] 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨. 硬X射线光栅微分干涉相衬成像两步相移算法的理论与实验研究. 物理学报, 2013, 62(6): 068702. doi: 10.7498/aps.62.068702
    [9] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [10] 杨强, 刘鑫, 郭金川, 雷耀虎, 黄建衡, 牛憨笨. 无吸收光栅的X射线相位衬度成像实验研究. 物理学报, 2012, 61(16): 160702. doi: 10.7498/aps.61.160702
    [11] 程冠晓, 胡超. X射线相衬成像光子筛. 物理学报, 2011, 60(8): 080703. doi: 10.7498/aps.60.080703
    [12] 苏兆锋, 杨海亮, 邱爱慈, 孙剑锋, 丛培天, 王亮平, 雷天时, 韩娟娟. 高能脉冲X射线能谱测量. 物理学报, 2010, 59(11): 7729-7735. doi: 10.7498/aps.59.7729
    [13] 张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠. 基于软X射线谱学显微双能衬度图像的元素空间分布研究. 物理学报, 2010, 59(7): 4535-4541. doi: 10.7498/aps.59.4535
    [14] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法. 物理学报, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [15] 李 涵, 唐新峰, 赵文俞, 张清杰. 双原子填充式skutterudite化合物的结构及X射线光电子能谱分析. 物理学报, 2006, 55(12): 6506-6510. doi: 10.7498/aps.55.6506
    [16] 刘丽想, 杜国浩, 胡 雯, 骆玉宇, 谢红兰, 陈 敏, 肖体乔. 利用定量相衬成像消除X射线同轴轮廓成像中散射的影响. 物理学报, 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
    [17] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复. 物理学报, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
    [18] 陈 敏, 肖体乔, 骆玉宇, 刘丽想, 魏 逊, 杜国浩, 徐洪杰. 微聚焦管硬x射线位相衬度成像. 物理学报, 2004, 53(9): 2953-2957. doi: 10.7498/aps.53.2953
    [19] 陈波, 郑志坚, 丁永坤, 李三伟, 王耀梅. 双示踪元素X射线能谱诊断激光等离子体电子温度. 物理学报, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
    [20] 高大超, A.POGANY, A.W.STEVENSON, T.GUREYEV, S.W.WILKINS, 麦振洪. 硬X射线位相衬度成象. 物理学报, 2000, 49(12): 2357-2368. doi: 10.7498/aps.49.2357
计量
  • 文章访问数:  7088
  • PDF下载量:  286
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-08
  • 修回日期:  2016-09-08
  • 刊出日期:  2017-01-05

/

返回文章
返回