搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

畴腐蚀掺镁铌酸锂可调阵列光分束器的研究

佟曼 范天伟 陈云琳

引用本文:
Citation:

畴腐蚀掺镁铌酸锂可调阵列光分束器的研究

佟曼, 范天伟, 陈云琳

Tunable array beam splitter with different domain-etching depth based on MgO-doped lithium niobate crystal

Tong Man, Fan Tian-Wei, Chen Yun-Lin
PDF
导出引用
  • 研究了不同畴腐蚀深度的掺镁铌酸锂二维六角可调阵列光分束器的分数Talbot效应. 对不同Talbot分数 和不同畴腐蚀深度的阵列光分束器Talbot衍射像进行了数值模拟理论研究. 模拟结果表明, Talbot分数 可以改变Talbot衍射像的周期及结构分布, 而畴腐蚀深度可有效调制衍射像的光强分布. 在理论研究的基础上, 设计并制备了具有不同畴腐蚀深度的掺镁铌酸锂二维六角阵列光分束器, 对其在不同Talbot分数 条件下的分数Talbot效应进行了通光实验研究, 实现了畴腐蚀阵列光分束器对近场Talbot衍射光强分布的调制, 实验结果与理论研究结果一致.
    The Talbot effect is a self-imaging phenomenon of near-field diffraction. When a plane wave is incident on a periodic diffraction grating, the image of the grating is repeated at regular distances away from the grating plane. A Talbot array illuminator is a device that splits singular light beam into an array of beams with periodical optical intensity based on Talbot effect. LiNbO3 (LN) crystal is a kind of practicable material for a Talbot array illuminator due to its perfect optical characteristics. MgO-doped LiNbO3 (MgLN) crystal shows shorter absorption edge wavelength and higher resistance to photorefractive damage than LN. Up to now, the usefulness and simplicity of Talbot effect have still aroused the interest of many scholars.In the conventional method, a Talbot array illuminator is fabricated by using high external electric field to modulate the phase difference. However, essentially, high external electric field restricts the Talbot array illuminator to applications in optical integration and optical micro structure devices. Now we are looking forward to a new way which avoids using high external electric field.In this paper, we systematically study the two-dimensional (2D) hexagonal tunable array beam splitter, which is fabricated by domain-etching in MgLN crystal, and its fractional Talbot effect. The self-imaging phenomenon caused by Talbot effect in the Fresnel field for this phase array coherently illuminated is theoretically analyzed according to Fresnel diffraction theory. We numerically simulate the light intensity distributions of Talbot diffraction image under different values of Talbot coefficient and different values of domain-etching depth. The simulation results show that can change the array period and the structure distribution of the fractional Talbot diffraction image, and the domain-etching depth can modulate the light intensity distribution of diffraction image. Based on the numerical simulation results, the 2D hexagonal array beam splitters are fabricated with different values of domain-etching depth. The fractional Talbot diffraction images of array splitters are obtained at different values of through the optical experiments. The results show that domain-etching depth can effectively modulate the intensity distribution of diffraction image, becoming a tunable array beam splitter successfully. The experimental results agree well with the simulation results. The theoretical and experimental results show that the optimal self-image visibility can be obtained at a Talbot coefficient of 0.5 and a domain-etching depth of 0.39 m, while the duty cycle is 52%. Moreover, a good self-image pattern is also observed under thinner domain-etching depth, which is beneficial to optical integration and micro optical devices.
      通信作者: 陈云琳, ylchen@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61178052)和教育部博士点基金(批准号: 20130009110008)资助的课题.
      Corresponding author: Chen Yun-Lin, ylchen@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178052) and the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 20130009110008).
    [1]

    Talbot H F 1836 The London and Edinburgh Philosophical Magazine and Journal of Science 9 401

    [2]

    Zhou C H, Stankovic S, Denz C, Tschudi T 1999 Opt. Commun. 161 209

    [3]

    Cohen J L, Dubetsky B, Berman P R, Cohen J L, Dubetsky B, Berman P R 1999 Phys. Rev. A 60 3982

    [4]

    Kohno T, Suzuki S, Shimizu K 2007 Phys. Rev. A 76 053624

    [5]

    Kung H L, Bhatnagar A, Miller D A B 2001 Opt. Lett. 26 1645

    [6]

    Takahashi H, Oda K, Toba H 1996 J. Lightwave Technol. 14 1097

    [7]

    Mawst L J, Botez D, Roth T J, Simmons W W, Peterson G, Jansen M, Wilcox J Z, Yang J J 1989 Electron. Lett. 25 365

    [8]

    Lei Y H, Liu X, Guo J C, Zhao Z G, Niu H B 2011 Chin. Phys. B 20 042901

    [9]

    Wang Z L, Gao K, Chen J, Ge X, Zhu P P, Tian Y C, Wu Z Y 2012 Chin. Phys. B 21 118703

    [10]

    Wen M W, Yang X W, Wang Z S 2015 Acta Phys. Sin. 64 114102 (in Chinese) [闻铭武, 杨笑微, 王占山 2015 物理学报 64 114102]

    [11]

    Liu X S, Li E R, Zhu P P, et al. 2010 Chin. Phys. B 19 040701

    [12]

    Chen Y L, Guo J, Lou C B 2004 J. Crystal Growth 263 427

    [13]

    Chen Y L, Lou C, Xu J, Chen S L, Kong Y F, Zhang G Y, Wen J P 2003 J. Appl. Phys. 94 3350

    [14]

    Paturzo M, De Natale P, de Nicola S 2006 Opt. Lett. 31 3164

    [15]

    Wen J, Zhang Y, Zhu S N, Xiao M 2011 J. Opt. Soc. Am. B 28 275

    [16]

    Li G H, Jiang H L, Xue X Y 2011 Chin. Phys. B 20 064201

    [17]

    Chen Z, Liu D, Zhang Y, Wen J, Zhu S N, Xiao M 2012 Opt. Lett. 37 689

    [18]

    Liu D, Zhang Y, Chen Z, Wen J, Xiao M 2012 J. Opt. Soc. Am. B 29 3325

    [19]

    Fan T W, Chen Y L, Zhang J H 2013 Acta Phys. Sin. 62 094216 (in Chinese) [范天伟, 陈云琳, 张进宏 2013 物理学报 62 094216]

    [20]

    Li J G, Chen Y L, Zhang J H 2012 Acta Phys. Sin. 61 124210 (in Chinese) [李建光, 陈云琳, 张进宏 2012 物理学报 61 124210]

    [21]

    Zhang J H, Chen Y L 2014 Acta Opt. Sin. 34 32 (in Chinese) [张进宏, 陈云琳 2014 光学学报 34 32]

    [22]

    Capmany J, Fernndez-Pousa C R, Diguez E 2003 Appl. Phys. Lett. 83 5145

    [23]

    Grilli S, Ferraro P, de Natale P 2005 Appl. Phys. Lett. 87 233 106

    [24]

    Fan T W, Chen Y L 2014 Acta Opt. Sin. 34 259 (in Chinese) [范天伟, 陈云琳 2014 光学学报 34 259]

    [25]

    Qin Y, Zhang J, Yao W, Wang C, Zhang S 2015 J. Am. Ceram. Soc. 98 1027

    [26]

    Boes A, Steigerwald H, Crasto T, Wade S A, Limboeck T, Soergel E, Mitchell A 2014 Appl. Phys. B 115 577

    [27]

    Chen Y, Liu S W, Wang D, Chen T, Xiao M 2007 Appl. Opt. 46 7693

    [28]

    Chen Y, Lou C, Xu J 2003 J. Appl. Phys. 94 3350

  • [1]

    Talbot H F 1836 The London and Edinburgh Philosophical Magazine and Journal of Science 9 401

    [2]

    Zhou C H, Stankovic S, Denz C, Tschudi T 1999 Opt. Commun. 161 209

    [3]

    Cohen J L, Dubetsky B, Berman P R, Cohen J L, Dubetsky B, Berman P R 1999 Phys. Rev. A 60 3982

    [4]

    Kohno T, Suzuki S, Shimizu K 2007 Phys. Rev. A 76 053624

    [5]

    Kung H L, Bhatnagar A, Miller D A B 2001 Opt. Lett. 26 1645

    [6]

    Takahashi H, Oda K, Toba H 1996 J. Lightwave Technol. 14 1097

    [7]

    Mawst L J, Botez D, Roth T J, Simmons W W, Peterson G, Jansen M, Wilcox J Z, Yang J J 1989 Electron. Lett. 25 365

    [8]

    Lei Y H, Liu X, Guo J C, Zhao Z G, Niu H B 2011 Chin. Phys. B 20 042901

    [9]

    Wang Z L, Gao K, Chen J, Ge X, Zhu P P, Tian Y C, Wu Z Y 2012 Chin. Phys. B 21 118703

    [10]

    Wen M W, Yang X W, Wang Z S 2015 Acta Phys. Sin. 64 114102 (in Chinese) [闻铭武, 杨笑微, 王占山 2015 物理学报 64 114102]

    [11]

    Liu X S, Li E R, Zhu P P, et al. 2010 Chin. Phys. B 19 040701

    [12]

    Chen Y L, Guo J, Lou C B 2004 J. Crystal Growth 263 427

    [13]

    Chen Y L, Lou C, Xu J, Chen S L, Kong Y F, Zhang G Y, Wen J P 2003 J. Appl. Phys. 94 3350

    [14]

    Paturzo M, De Natale P, de Nicola S 2006 Opt. Lett. 31 3164

    [15]

    Wen J, Zhang Y, Zhu S N, Xiao M 2011 J. Opt. Soc. Am. B 28 275

    [16]

    Li G H, Jiang H L, Xue X Y 2011 Chin. Phys. B 20 064201

    [17]

    Chen Z, Liu D, Zhang Y, Wen J, Zhu S N, Xiao M 2012 Opt. Lett. 37 689

    [18]

    Liu D, Zhang Y, Chen Z, Wen J, Xiao M 2012 J. Opt. Soc. Am. B 29 3325

    [19]

    Fan T W, Chen Y L, Zhang J H 2013 Acta Phys. Sin. 62 094216 (in Chinese) [范天伟, 陈云琳, 张进宏 2013 物理学报 62 094216]

    [20]

    Li J G, Chen Y L, Zhang J H 2012 Acta Phys. Sin. 61 124210 (in Chinese) [李建光, 陈云琳, 张进宏 2012 物理学报 61 124210]

    [21]

    Zhang J H, Chen Y L 2014 Acta Opt. Sin. 34 32 (in Chinese) [张进宏, 陈云琳 2014 光学学报 34 32]

    [22]

    Capmany J, Fernndez-Pousa C R, Diguez E 2003 Appl. Phys. Lett. 83 5145

    [23]

    Grilli S, Ferraro P, de Natale P 2005 Appl. Phys. Lett. 87 233 106

    [24]

    Fan T W, Chen Y L 2014 Acta Opt. Sin. 34 259 (in Chinese) [范天伟, 陈云琳 2014 光学学报 34 259]

    [25]

    Qin Y, Zhang J, Yao W, Wang C, Zhang S 2015 J. Am. Ceram. Soc. 98 1027

    [26]

    Boes A, Steigerwald H, Crasto T, Wade S A, Limboeck T, Soergel E, Mitchell A 2014 Appl. Phys. B 115 577

    [27]

    Chen Y, Liu S W, Wang D, Chen T, Xiao M 2007 Appl. Opt. 46 7693

    [28]

    Chen Y, Lou C, Xu J 2003 J. Appl. Phys. 94 3350

  • [1] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究. 物理学报, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [2] 杨哲宁, 乐阳阳, 洪煦昊, 赵瑞智, 陆蓉儿, 冯霞, 许亚光, 袁旭东, 张超, 秦亦强, 朱永元. 利用保角变换实现环形光栅的Talbot效应. 物理学报, 2020, 69(3): 034201. doi: 10.7498/aps.69.20191340
    [3] 范天伟, 陈云琳, 张进宏. 基于Talbot效应的掺镁铌酸锂二维六角位相阵列光栅的研究. 物理学报, 2013, 62(9): 094216. doi: 10.7498/aps.62.094216
    [4] 师丽红, 阎文博, 申绪男, 陈贵锋, 陈洪建, 乔会宾, 贾芳芳, 林爱调. 掺铁铌酸锂晶体中光致散射的锂组分和温度依赖关系研究. 物理学报, 2012, 61(23): 234207. doi: 10.7498/aps.61.234207
    [5] 周波, 陈云琳, 黎远安, 李海伟. 基于Talbot效应的可调位相差二维六角位相阵列器的理论研究和数值模拟. 物理学报, 2010, 59(3): 1816-1822. doi: 10.7498/aps.59.1816
    [6] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法. 物理学报, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [7] 齐继伟, 李玉栋, 许京军, 崔国新, 孔凡磊, 孙 骞. 铌酸锂晶体中的磁光折变效应研究. 物理学报, 2007, 56(12): 7015-7022. doi: 10.7498/aps.56.7015
    [8] 吴 波, 蔡双双, 沈剑威, 沈永行. 基于镁掺杂的周期性畴反转铌酸锂的宽调谐光参量振荡器. 物理学报, 2007, 56(5): 2684-2688. doi: 10.7498/aps.56.2684
    [9] 闫卫国, 陈云琳, 王栋栋, 郭 娟, 张光寅. 掺镁铌酸锂亚微米结构畴反转的研究. 物理学报, 2006, 55(11): 5855-5858. doi: 10.7498/aps.55.5855
    [10] 王淮生. 啁啾超短脉冲光波照射下光栅Talbot效应的研究. 物理学报, 2005, 54(12): 5688-5691. doi: 10.7498/aps.54.5688
    [11] 姚江宏, 陈亚辉, 颜博霞, 邓浩亮, 孔勇发, 陈绍林, 许京军, 张光寅. 掺镁铌酸锂晶体亚微米畴结构特性研究. 物理学报, 2004, 53(12): 4369-4372. doi: 10.7498/aps.53.4369
    [12] 王红成, 王晓生, 佘卫龙, 任国斌, 王 智, 娄淑琴, 简水生. 空间相位调制对光伏孤子传播的影响. 物理学报, 2004, 53(8): 2595-2599. doi: 10.7498/aps.53.2595
    [13] 姚江宏, 陈亚辉, 许京军, 张光寅, 朱圣星. 近化学计量比铌酸锂晶体周期极化畴反转特性研究. 物理学报, 2002, 51(1): 192-196. doi: 10.7498/aps.51.192
    [14] 苗润才, 叶青, 沈常宇, 滕晓丽. 环形光斑激光束在非线性克尔介质中的分束现象. 物理学报, 2002, 51(9): 1927-1932. doi: 10.7498/aps.51.1927
    [15] 汪 进, 杨 昆, 金 婵. 掺镁铌酸锂晶体结构的研究. 物理学报, 1999, 48(6): 1103-1106. doi: 10.7498/aps.48.1103
    [16] 刘建军, 张万林, 张光寅. 掺镁铌酸锂晶体的缺陷结构及其结晶化学分析. 物理学报, 1996, 45(11): 1852-1858. doi: 10.7498/aps.45.1852
    [17] 吴仲康, 张家民, 刘思敏, 王华馥, 张光寅, 吕永彬, 徐良瑛, 徐玉恒. 掺铁铌酸锂(LiNbO3:Fe)的光致损伤. 物理学报, 1987, 36(1): 24-28. doi: 10.7498/aps.36.24
    [18] 杨翠英, 冯国光, 周玉清, 唐棣生. 三铌酸锂空间群的会聚束电子衍射测定. 物理学报, 1984, 33(11): 1586-1588. doi: 10.7498/aps.33.1586
    [19] 仲跻国, 徐观峰, 王廷福, 张纯玉, 吕玉才, 吕长青, 陈家容. 高掺镁铌酸锂晶体的生长和倍频性能. 物理学报, 1983, 32(6): 795-798. doi: 10.7498/aps.32.795
    [20] 王业宁, 朱劲松, 谈云鹏. 铌酸锂晶体中多畴层带区倍频光的研究. 物理学报, 1980, 29(12): 1629-1635. doi: 10.7498/aps.29.1629
计量
  • 文章访问数:  5018
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-03
  • 修回日期:  2015-08-28
  • 刊出日期:  2016-01-05

/

返回文章
返回