搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合准周期异质结构的带隙补偿与展宽

邹俊辉 张娟

引用本文:
Citation:

混合准周期异质结构的带隙补偿与展宽

邹俊辉, 张娟

Photonic bandgap compensation and extension for hybrid quasiperiodic heterostructures

Zou Jun-Hui, Zhang Juan
PDF
导出引用
  • 基于一维光子晶体异质结构的多帯隙交叠补偿思想, 提出了一种新颖的混合准周期级联结构, 用于扩大全方位光子带隙. 该全方位反射器结构由Fibonacci准周期结构和Thue-Morse准周期结构级联构成, 研究表明, 相比单种准周期结构, 其全方位光子带隙宽度有显著提高. 系统研究了结构参数(如周期数、阶数、介质折射率和厚度)对该结构光子带隙的影响, 通过与周期结构带隙特性的比较, 分析了准周期结构易于实现多带隙交叠的原因, 为更复杂带隙结构的补偿和展宽奠定了设计基础.
    Based on the idea of multiple photonic bandgap (PBG) overlapping for a one-dimensional photonic crystal heterostructure, a novel hybrid quasiperiodic heterostructure is proposed to enlarge the omnidirectional photonic bandgap (OPBG). The heterostructure is formed by combining Fibonacci and Thue-Morse quasiperiodic structure. The results show that the OPBG of the heterostructure is enlarged obviously, which increases about three times compared with that of Fibonacci quasiperiodic structure, and twelve times compared with that of Thue-Morse quasiperiodic structure. The influences of structural parameters, such as period number and generation number, on PBGs of Fibonacci and Thue-Morse quasiperiodic structure are studied respectively. The results show that the parameters have little effects on PBG widths of the two quasiperiodic structures. The influences of the refractive indexes and thickness values of the high and low refractive index materials on OPBG of the heterostructure are also investigated. The results show that the OPBG of the heterostructure can be further broadened by increasing the refractive index ratios and thickness values of the high and low refractive index materials. The reason why the quasiperiodic structure can easily realize the multiple band gap overlapping is analyzed by comparing the bandgap properties of periodic structure. The number of PBGs of the quasiperiodic structure in the same wavelength range is more than that of the periodic structure. Moreover, with the increase of generation number of the quasiperiodic structure, due to the occurrence of PBG split, the number of PBGs increases obviously, and each PBG width is less than that of the periodic structure. Owing to this kind of PBG characteristic of the quasiperiodic structure, the heterostructure formed by cascading the two quasiperiodic structures is more prone to realizing the multiple PBG overlapping than other heterostructures, thus more easily achieving the expansion of OPBG. These results lay the design foundation for the compensation and broadening of the more complex bandgap structure.
      通信作者: 张娟, juanzhang@staff.shu.edu.cn
    • 基金项目: 上海市科委重点项目(批准号: 11jc1413300)、上海市教委科研创新项目(批准号: 15ZZ045)和上海市重点学科(批准号: S30108)资助的课题.
      Corresponding author: Zhang Juan, juanzhang@staff.shu.edu.cn
    • Funds: Project supported by the Key Program of the Science and Technology Commission of Shanghai, China (Grant No. 11jc1413300), the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 15ZZ045), and the Shanghai Leading Academic Discipline Project, China (Grant No. S30108).
    [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Zhang J, Zhang R J, Wang Y 2014 J. Appl. Phys. 116 183104

    [4]

    Zhang J, Yu S, Guo S, Li X 2011 Chin. J. Lasers 38 0105005 (in Chinese) [张娟, 于帅, 郭森, 李雪 2011 中国激光 38 0105005]

    [5]

    Zhang J, Fu W P, Zhang R J, Wang Y 2014 Chin. Phys. B 23 0104215

    [6]

    Gao Y H, Xu X S 2014 Chin. Phys. B 23 0114205

    [7]

    Ye H, Zhang J Q N, Yu Z Y, Wang D L, Chen Z H 2015 Chin. Phys. B 24 094214

    [8]

    Deopura M, Ullal C K, Temelkuran B, Fink Y 2001 Opt. Lett. 26 1197

    [9]

    Ibanescu M, Fink Y, Fan S, Thomas E L, Joannopoulos J D 2000 Science 289 415

    [10]

    Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopulos J D, Fink Y 2002 Science 296 510

    [11]

    Chigrin D N, Lavrinenko A V, Yarotsky D A, Gaponenko S V 1999 Appl. Phys. A: Mater. Sci. Process. 68 25

    [12]

    Dai X Y, Xiang Y J, Wen S C, He H Y 2011 J. Appl. Phys. 109 053104

    [13]

    Manzanares-Martinez J, Archuleta-Garcia R, Castro-Garay P, Moctezuma-Enriquez D, Urrutia-Banuelos E 2011 Prog. Electromagn. Res. 111 105

    [14]

    Kumar V, Anis M, Singh K S, Singh G 2011 Optik 122 2186

    [15]

    Suthar B, Bhargava A 2012 Opt. Commun. 285 1481

    [16]

    Wang X, Hu X H, Li Y Z, Jia W L 2002 Appl. Phys. Lett. 80 4291

    [17]

    Zhang J, Benson T M 2013 J. Mod. Opt. 60 1804

    [18]

    Steurer W, Sutter-Widmer D 2007 J. Phys. D: Appl. Phys. 40 R229

    [19]

    Poddubny A N, Ivchenko E L 2010 Physica E 42 1871

    [20]

    Singh B K, Thapa K B, Pandey P C 2013 Opt. Commun. 297 65

    [21]

    Gazi N A, Bernhard G 2014 J. Appl. Phys. 116 094903

    [22]

    Hsueh W J, Chen C T, Chen C H 2008 Phys. Rev. A 78 013836

    [23]

    Grigoriev V V, Biancalana F 2010 Photon. Nanostruct.-Fundam. Appl. 8 285

    [24]

    Mouldi A, Kanzari M 2013 Prog. Electromagn. Res. M 32 169

    [25]

    Born M, Wolf E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge: Cambridge University Press)

  • [1]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [2]

    John S 1987 Phys. Rev. Lett. 58 2486

    [3]

    Zhang J, Zhang R J, Wang Y 2014 J. Appl. Phys. 116 183104

    [4]

    Zhang J, Yu S, Guo S, Li X 2011 Chin. J. Lasers 38 0105005 (in Chinese) [张娟, 于帅, 郭森, 李雪 2011 中国激光 38 0105005]

    [5]

    Zhang J, Fu W P, Zhang R J, Wang Y 2014 Chin. Phys. B 23 0104215

    [6]

    Gao Y H, Xu X S 2014 Chin. Phys. B 23 0114205

    [7]

    Ye H, Zhang J Q N, Yu Z Y, Wang D L, Chen Z H 2015 Chin. Phys. B 24 094214

    [8]

    Deopura M, Ullal C K, Temelkuran B, Fink Y 2001 Opt. Lett. 26 1197

    [9]

    Ibanescu M, Fink Y, Fan S, Thomas E L, Joannopoulos J D 2000 Science 289 415

    [10]

    Hart S D, Maskaly G R, Temelkuran B, Prideaux P H, Joannopulos J D, Fink Y 2002 Science 296 510

    [11]

    Chigrin D N, Lavrinenko A V, Yarotsky D A, Gaponenko S V 1999 Appl. Phys. A: Mater. Sci. Process. 68 25

    [12]

    Dai X Y, Xiang Y J, Wen S C, He H Y 2011 J. Appl. Phys. 109 053104

    [13]

    Manzanares-Martinez J, Archuleta-Garcia R, Castro-Garay P, Moctezuma-Enriquez D, Urrutia-Banuelos E 2011 Prog. Electromagn. Res. 111 105

    [14]

    Kumar V, Anis M, Singh K S, Singh G 2011 Optik 122 2186

    [15]

    Suthar B, Bhargava A 2012 Opt. Commun. 285 1481

    [16]

    Wang X, Hu X H, Li Y Z, Jia W L 2002 Appl. Phys. Lett. 80 4291

    [17]

    Zhang J, Benson T M 2013 J. Mod. Opt. 60 1804

    [18]

    Steurer W, Sutter-Widmer D 2007 J. Phys. D: Appl. Phys. 40 R229

    [19]

    Poddubny A N, Ivchenko E L 2010 Physica E 42 1871

    [20]

    Singh B K, Thapa K B, Pandey P C 2013 Opt. Commun. 297 65

    [21]

    Gazi N A, Bernhard G 2014 J. Appl. Phys. 116 094903

    [22]

    Hsueh W J, Chen C T, Chen C H 2008 Phys. Rev. A 78 013836

    [23]

    Grigoriev V V, Biancalana F 2010 Photon. Nanostruct.-Fundam. Appl. 8 285

    [24]

    Mouldi A, Kanzari M 2013 Prog. Electromagn. Res. M 32 169

    [25]

    Born M, Wolf E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge: Cambridge University Press)

  • [1] 武敏, 费宏明, 林瀚, 赵晓丹, 杨毅彪, 陈智辉. 基于二维六方氮化硼材料的光子晶体非对称传输异质结构设计. 物理学报, 2021, 70(2): 028501. doi: 10.7498/aps.70.20200741
    [2] 费宏明, 严帅, 徐瑜成, 林瀚, 武敏, 杨毅彪, 陈智辉, 田媛, 张娅敏. 可实现宽频带光波非对称传输的自准直效应光子晶体异质结构. 物理学报, 2020, 69(18): 184214. doi: 10.7498/aps.69.20200538
    [3] 吴丰, 郭志伟, 吴家驹, 江海涛, 杜桂强. 含双曲超构材料的复合周期结构的带隙调控及应用. 物理学报, 2020, 69(15): 154205. doi: 10.7498/aps.69.20200084
    [4] 陈阿丽, 梁同利, 汪越胜. 二维8重固-流型准周期声子晶体带隙特性研究. 物理学报, 2014, 63(3): 036101. doi: 10.7498/aps.63.036101
    [5] 栗岩锋, 胡晓堃, 王爱民. 基于高折射率断环结构的全固光子带隙光纤的设计. 物理学报, 2011, 60(6): 064212. doi: 10.7498/aps.60.064212
    [6] 张正仁, 隆正文, 袁玉群, 刁心峰. 对称型单负交替一维光子晶体的能带结构. 物理学报, 2010, 59(1): 587-591. doi: 10.7498/aps.59.587
    [7] 窦军红, 盛艳, 张道中. 准晶非线性光子晶体中二次谐波波长和温度调谐的研究. 物理学报, 2009, 58(7): 4685-4688. doi: 10.7498/aps.58.4685
    [8] 赵明明, 吕燕伍, 余家新, 庞许倩. 旋转对二维正方晶格介质柱内空结构光子晶体禁带的影响. 物理学报, 2008, 57(2): 1061-1065. doi: 10.7498/aps.57.1061
    [9] 朱永政, 尹计秋, 邱明辉. 非密堆积TiO2空心微球光子晶体的制备与能带分析. 物理学报, 2008, 57(12): 7725-7728. doi: 10.7498/aps.57.7725
    [10] 邓新华, 刘念华, 刘根泉. 单负材料光子晶体异质结构的频率响应. 物理学报, 2007, 56(12): 7280-7285. doi: 10.7498/aps.56.7280
    [11] 童元伟, 张冶文, 赫 丽, 李宏强, 陈 鸿. 用传输矩阵法研究微波波段准一维同轴光子晶体能隙结构. 物理学报, 2006, 55(2): 935-940. doi: 10.7498/aps.55.935
    [12] 李 蓉, 程 阳, 崔丽彬, 朱 峰, 周 静, 刘大禾, 刘 守, 张向苏. 晶格数目对面心立方结构光子晶体带隙的影响. 物理学报, 2006, 55(1): 188-191. doi: 10.7498/aps.55.188
    [13] 韦中超, 戴峭峰, 汪河洲. 毛细管中柱对称类面心结构胶体晶体的光谱特性. 物理学报, 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
    [14] 顾建忠, 林水洋, 王 闯, 喻筱静, 孙晓玮. 基于补偿型微带谐振单元的一维光子带隙结构. 物理学报, 2006, 55(8): 4176-4180. doi: 10.7498/aps.55.4176
    [15] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究. 物理学报, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [16] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙. 物理学报, 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [17] 张海涛, 巩马理, 王东生, 李 伟, 赵达尊. 群论在光子带隙计算中的应用. 物理学报, 2004, 53(7): 2060-2064. doi: 10.7498/aps.53.2060
    [18] 周 梅, 陈效双, 徐 靖, 陆 卫. 硅基两维光子晶体的制备和光子带隙特性. 物理学报, 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
    [19] 王辉, 李永平. 用特征矩阵法计算光子晶体的带隙结构. 物理学报, 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
    [20] 何拥军, 苏惠敏, 唐芳琼, 董鹏, 汪河洲. 准完全带隙胶体非晶光子晶体. 物理学报, 2001, 50(5): 892-896. doi: 10.7498/aps.50.892
计量
  • 文章访问数:  5138
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-28
  • 修回日期:  2015-08-20
  • 刊出日期:  2016-01-05

/

返回文章
返回