搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高折射率断环结构的全固光子带隙光纤的设计

栗岩锋 胡晓堃 王爱民

引用本文:
Citation:

基于高折射率断环结构的全固光子带隙光纤的设计

栗岩锋, 胡晓堃, 王爱民

Design of high-index broken-ring-based all-solid photonic bandgap fibers

Li Yan-Feng, Hu Xiao-Kun, Wang Ai-Min
PDF
导出引用
  • 设计了基于断环结构的全固光子带隙光纤,其背景材料为熔石英而断环结构由若干掺杂的高折射率介质柱构成.基于平面波展开法计算得到的态密度图和Bloch模场分布表明,该种光纤中的一个高阶带隙可以得到调节并被极大展宽,带隙调节的基本原理是断环可以同时控制包层介质柱的线偏振模式的角向和径向模式阶数.研究表明,断环中的介质柱数目决定了受影响最小的一组线偏振模式的最高角向阶数,而带隙宽度受介质柱尺寸影响很大.这一宽的高阶带隙可以用来设计带隙中心分别在800和1550 nm、带宽分别为488和944 nm的全固光子带隙光纤
    The design of all-solid photonic bandgap fibers based on a high-index broken ring is investigated, where the background material is silica and the broken ring consists of several individual high-index rods. Density of states maps and Bloch mode field distributions obtained by plane wave expansion method show that a high-order bandgap in such fibers can be engineered and broadened. The principle is that both the azimuthal and the radial orders of the LP modes of the high-index rods in the cladding can be controlled by the broken ring. It is demonstrated that the highest azimuthal order of the group of less affected LP modes is determined by the rod number and the bandgap width is largely affected by the rod size. The high-order bandgap can be used to design all-solid photonic bandgap fiber with broad transmission ranges of 488 nm and 944 nm for a center wavelength of 800 nm and 1550 nm, respectively, and the transmission window features the typical normal-zero-anomalous dispersion profile.
    • 基金项目: 国家重点基础研究发展计划(批准号:2010CB327604,2011CB808101)和国家自然科学基金(批准号:60838004,60907040,60927010)资助的课题.
    [1]

    Joannopoulos J D, Johnson S G, Meade R D, Winn J N 2008 Photonic Crystals: Molding the Flow of Light (2nd Ed.) (Princeton: Princeton University Press)

    [2]

    Knight J C 2003 Nature 424 847

    [3]

    Russell P St J 2006 J. Lightwave Technol. 24 4729

    [4]

    Wan J H, Hou L T, Zhou G Y, Wei D B, Wang H Y, Dong S R, Wang Q Y, Liu B W, Hu M L 2008 Acta Phys. Sin. 57 4230 (in Chinese) [苑金辉、侯蓝田、周桂耀、魏东宾、王海云、董世蕊、王清月、刘博文、胡明列 2008 物理学报 57 4230]

    [5]

    Zhang H, Wang Q G, Yang B J, Yu L 2008 Acta Phys. Sin. 57 5722 (in Chinese) [张 虎、王秋国、杨伯君、于 丽 2008 物理学报 57 5722]

    [6]

    Lu J, Meng Z, Liu H, Feng T, Dai Q, Wu L, Guo Q, Hu W, Lan S 2009 Chin. Phys. B 18 4333

    [7]

    Knight J C, Luan F, Pearce G J, Wang A, Birks T A, Bird D M 2006 Jpn. J. Appl. Phys. 45 6059

    [8]

    Luan F, George A K, Hedley T D, Pearce G J, Bird D M, Knight J C, Russell P St J 2004 Opt. Lett. 29 2369

    [9]

    Bouwmans G, Bigot L, Quiquempois Y, Lopez F, Provino L, Douay M 2005 Opt. Express 13 8452

    [10]

    Argyros A, Birks T A, Leon-Saval S G, Cordeiro C M B, Russell P St J 2005 Opt. Express 13 2503

    [11]

    White T P, McPhedran R C, Martijn de Sterke C, Litchinitser N M, Eggleton B J 2002 Opt. Lett. 27 1977

    [12]

    Litchinitser N M, Dunn S C, Usner B, Eggleton B J, White T P, McPhedran R C, Martijn de Sterke C 2003 Opt. Express 11 1243

    [13]

    Lgsgaard J 2004 J. Opt. A: Pure Appl. Opt. 6 798

    [14]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (London: Chapman and Hall) pp 280—300

    [15]

    Birks T A, Luan F, Pearce G J, Wang A, Knight J C, Bird D M 2006 Opt. Express 14 5688

    [16]

    Wang A, George A K, Knight J C 2006 Opt. Lett. 31 1388

    [17]

    Liu B, Hu M, Fang X, Li Y, Chai L, Li J, Chen W, Wang C 2008 IEEE Photon. Technol. Lett. 20 581

    [18]

    Isomki A, Okhotnikov O G 2006 Opt. Express 14 9238

    [19]

    Kibler B, Martynkien T, Szpulak M, Finot C, Fatome J, Wojcik J, Urbanczyk W, Wabnitz S 2009 Opt. Express 17 10393

    [20]

    Bétourné A, Kudlinski A, Bouwmans G, Vanvincq O, Mussot A, Quiquempois Y 2009 Opt. Lett. 34 3083

    [21]

    Jin L, Wang Z, Fang Q, Liu B, Liu Y, Kai G, Dong X, Guan B 2007 Opt. Lett. 32 2717

    [22]

    Shirakawa A, Maruyama H, Ueda K, Olausson C B, Lyngs J K, Broeng J 2009 Opt. Express 17 447

    [23]

    Bétourné A, Bouwmans G, Quiquempois Y, Perrin M, Douay M 2007 Opt. Lett. 32 1719

    [24]

    Perrin M, Quiquempois Y, Bouwmans G, Douay M 2007 Opt. Express 15 13783

    [25]

    Ren G, Shum P, Zhang L, Yu X, Tong W, Luo J 2007 Opt. Lett. 32 1023

    [26]

    Stone J M, Pearce G J, Luan F, Birks T A, Knight J C, George A K, Bird D M 2006 Opt. Express 14 6291

    [27]

    Feng H, Lou S, Guo T, Yao L, Li H, Jian S 2008 Chin. Phys. B 17 232

    [28]

    Li Y F, Wang Q Y, Hu M L, Li S G, Liu X D, Hou L T 2004 Acta Phys. Sin. 53 1396 (in Chinese) [栗岩锋、王清月、胡明列、李曙光、刘晓东、侯蓝田 2004 物理学报 53 1396]

    [29]

    Pearce G J, Hedley T D, Bird D M 2005 Phys. Rev. B 71 195108

    [30]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173

    [31]

    Okamoto K 2006 Fundamentals of Optical Waveguides (2nd Ed.) (San Diego: Academic Press) pp92—93

  • [1]

    Joannopoulos J D, Johnson S G, Meade R D, Winn J N 2008 Photonic Crystals: Molding the Flow of Light (2nd Ed.) (Princeton: Princeton University Press)

    [2]

    Knight J C 2003 Nature 424 847

    [3]

    Russell P St J 2006 J. Lightwave Technol. 24 4729

    [4]

    Wan J H, Hou L T, Zhou G Y, Wei D B, Wang H Y, Dong S R, Wang Q Y, Liu B W, Hu M L 2008 Acta Phys. Sin. 57 4230 (in Chinese) [苑金辉、侯蓝田、周桂耀、魏东宾、王海云、董世蕊、王清月、刘博文、胡明列 2008 物理学报 57 4230]

    [5]

    Zhang H, Wang Q G, Yang B J, Yu L 2008 Acta Phys. Sin. 57 5722 (in Chinese) [张 虎、王秋国、杨伯君、于 丽 2008 物理学报 57 5722]

    [6]

    Lu J, Meng Z, Liu H, Feng T, Dai Q, Wu L, Guo Q, Hu W, Lan S 2009 Chin. Phys. B 18 4333

    [7]

    Knight J C, Luan F, Pearce G J, Wang A, Birks T A, Bird D M 2006 Jpn. J. Appl. Phys. 45 6059

    [8]

    Luan F, George A K, Hedley T D, Pearce G J, Bird D M, Knight J C, Russell P St J 2004 Opt. Lett. 29 2369

    [9]

    Bouwmans G, Bigot L, Quiquempois Y, Lopez F, Provino L, Douay M 2005 Opt. Express 13 8452

    [10]

    Argyros A, Birks T A, Leon-Saval S G, Cordeiro C M B, Russell P St J 2005 Opt. Express 13 2503

    [11]

    White T P, McPhedran R C, Martijn de Sterke C, Litchinitser N M, Eggleton B J 2002 Opt. Lett. 27 1977

    [12]

    Litchinitser N M, Dunn S C, Usner B, Eggleton B J, White T P, McPhedran R C, Martijn de Sterke C 2003 Opt. Express 11 1243

    [13]

    Lgsgaard J 2004 J. Opt. A: Pure Appl. Opt. 6 798

    [14]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (London: Chapman and Hall) pp 280—300

    [15]

    Birks T A, Luan F, Pearce G J, Wang A, Knight J C, Bird D M 2006 Opt. Express 14 5688

    [16]

    Wang A, George A K, Knight J C 2006 Opt. Lett. 31 1388

    [17]

    Liu B, Hu M, Fang X, Li Y, Chai L, Li J, Chen W, Wang C 2008 IEEE Photon. Technol. Lett. 20 581

    [18]

    Isomki A, Okhotnikov O G 2006 Opt. Express 14 9238

    [19]

    Kibler B, Martynkien T, Szpulak M, Finot C, Fatome J, Wojcik J, Urbanczyk W, Wabnitz S 2009 Opt. Express 17 10393

    [20]

    Bétourné A, Kudlinski A, Bouwmans G, Vanvincq O, Mussot A, Quiquempois Y 2009 Opt. Lett. 34 3083

    [21]

    Jin L, Wang Z, Fang Q, Liu B, Liu Y, Kai G, Dong X, Guan B 2007 Opt. Lett. 32 2717

    [22]

    Shirakawa A, Maruyama H, Ueda K, Olausson C B, Lyngs J K, Broeng J 2009 Opt. Express 17 447

    [23]

    Bétourné A, Bouwmans G, Quiquempois Y, Perrin M, Douay M 2007 Opt. Lett. 32 1719

    [24]

    Perrin M, Quiquempois Y, Bouwmans G, Douay M 2007 Opt. Express 15 13783

    [25]

    Ren G, Shum P, Zhang L, Yu X, Tong W, Luo J 2007 Opt. Lett. 32 1023

    [26]

    Stone J M, Pearce G J, Luan F, Birks T A, Knight J C, George A K, Bird D M 2006 Opt. Express 14 6291

    [27]

    Feng H, Lou S, Guo T, Yao L, Li H, Jian S 2008 Chin. Phys. B 17 232

    [28]

    Li Y F, Wang Q Y, Hu M L, Li S G, Liu X D, Hou L T 2004 Acta Phys. Sin. 53 1396 (in Chinese) [栗岩锋、王清月、胡明列、李曙光、刘晓东、侯蓝田 2004 物理学报 53 1396]

    [29]

    Pearce G J, Hedley T D, Bird D M 2005 Phys. Rev. B 71 195108

    [30]

    Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173

    [31]

    Okamoto K 2006 Fundamentals of Optical Waveguides (2nd Ed.) (San Diego: Academic Press) pp92—93

  • [1] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输. 物理学报, 2022, 71(3): 038501. doi: 10.7498/aps.71.20211299
    [2] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211299
    [3] 王家璐, 杜木清, 张伶莉, 刘永军, 孙伟民. 基于不同液晶填充光子晶体光纤传输特性的研究. 物理学报, 2015, 64(12): 120702. doi: 10.7498/aps.64.120702
    [4] 程兰, 罗兴, 韦会峰, 李海清, 彭景刚, 戴能利, 李进延. 1550 nm低损耗单模全固态光子带隙光纤研究. 物理学报, 2014, 63(7): 074210. doi: 10.7498/aps.63.074210
    [5] 武继江, 高金霞. 含特异材料一维超导光子晶体的带隙特性研究. 物理学报, 2013, 62(12): 124102. doi: 10.7498/aps.62.124102
    [6] 程胜飞, 彭景刚, 李进延, 程兰, 蒋作文, 李海清, 戴能利, 姜发刚, 杨晓波. 空芯光子晶体光纤表面模损耗控制的研究. 物理学报, 2012, 61(24): 244207. doi: 10.7498/aps.61.244207
    [7] 曹永军, 云国宏, 那日苏. 平面波展开法计算二维磁振子晶体带结构. 物理学报, 2011, 60(7): 077502. doi: 10.7498/aps.60.077502
    [8] 郭浩, 吴评, 于天宝, 廖清华, 刘念华, 黄永箴. 一种新型的光子晶体偏振光分束器的设计. 物理学报, 2010, 59(8): 5547-5552. doi: 10.7498/aps.59.5547
    [9] 亓丽梅, 杨梓强, 兰峰, 高喜, 史宗君, 梁正. 二维色散和各向异性磁化等离子体光子晶体色散特性研究. 物理学报, 2010, 59(1): 351-359. doi: 10.7498/aps.59.351
    [10] 王伟, 曹祥玉, 王帅, 王瑞, 郑秋容. 支撑介质对平面型电磁带隙结构带隙特性的影响. 物理学报, 2009, 58(7): 4708-4716. doi: 10.7498/aps.58.4708
    [11] 米 艳, 侯蓝田, 周桂耀, 王 康, 陈 超, 高 飞, 刘博文, 胡明列. 空芯光子晶体光纤光子带隙的测量与数值模拟. 物理学报, 2008, 57(6): 3583-3587. doi: 10.7498/aps.57.3583
    [12] 龚春娟, 胡雄伟. 遗传算法优化设计三角晶格光子晶体. 物理学报, 2007, 56(2): 927-932. doi: 10.7498/aps.56.927
    [13] 顾建忠, 林水洋, 王 闯, 喻筱静, 孙晓玮. 基于补偿型微带谐振单元的一维光子带隙结构. 物理学报, 2006, 55(8): 4176-4180. doi: 10.7498/aps.55.4176
    [14] 关春颖, 苑立波. 六角蜂窝结构光子晶体异质结带隙特性研究. 物理学报, 2006, 55(3): 1244-1247. doi: 10.7498/aps.55.1244
    [15] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙. 物理学报, 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [16] 周 梅, 陈效双, 徐 靖, 陆 卫. 硅基两维光子晶体的制备和光子带隙特性. 物理学报, 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
    [17] 张海涛, 巩马理, 王东生, 李 伟, 赵达尊. 群论在光子带隙计算中的应用. 物理学报, 2004, 53(7): 2060-2064. doi: 10.7498/aps.53.2060
    [18] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算. 物理学报, 2004, 53(10): 3384-3388. doi: 10.7498/aps.53.3384
    [19] 沈林放, 何赛灵, 吴良. 等效介质理论在光子晶体平面波展开分析方法中的应用. 物理学报, 2002, 51(5): 1133-1138. doi: 10.7498/aps.51.1133
    [20] 王辉, 李永平. 用特征矩阵法计算光子晶体的带隙结构. 物理学报, 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
计量
  • 文章访问数:  7830
  • PDF下载量:  1615
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-05
  • 修回日期:  2010-07-29
  • 刊出日期:  2011-03-05

/

返回文章
返回