搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁流体光子晶体的可调谐近似零折射率研究

耿滔 吴娜 董祥美 高秀敏

引用本文:
Citation:

基于磁流体光子晶体的可调谐近似零折射率研究

耿滔, 吴娜, 董祥美, 高秀敏

Tunable near-zero index of self-assembled photonic crystal using magnetic fluid

Geng Tao, Wu Na, Dong Xiang-Mei, Gao Xiu-Min
PDF
导出引用
  • 基于典型水基Fe3O4磁流体, 建立了工作频率可调的近似零折射率磁流体光子晶体的理论模型. 这种近似零折射率材料具有与自由空间阻抗相匹配的优点, 更重要的是其工作频率可由外磁场的大小来调节. 在满足等效折射率的绝对值小于0.05的条件下, 材料的归一化工作频率可由0.716变化到0.750.
    In a zero index material, the phase velocity of light is much greater than the speed of light in vacuum and can even approach to infinity. Thus, the phase of light throughout a piece of zero-index material is essentially a constant. The zero index material has recently been used in many areas due to its extraordinary optical properties, including beam collimation, cloaking and phase matching in nonlinear optics. However, most of zero index materials usually have narrow operating bandwidths and the operating frequencies are not tunable. In this work, the model of tunable near-zero index photonic crystal is established by using colloidal magnetic fluid. Magnetic fluid, as a kind of easy-made mature nanoscale magnetic material, has proved to be an excellent candidate for fabricating self-assembled photonic crystal, especially the band-tunable photonic crystal with fast and reversible response to external magnetic field. The band structure can be calculated using the plane wave expansion method. For TE mode, it can be seen that a triply-degenerate point (normalized frequency f=0.734) at point under external magnetic field H=147 Oe, forms a Dirac-like point in the band structure, which is called an accidental-degeneracy-induced Dirac-like point. The effective permittivity eff and permeability eff are calculated using an expanded effective medium theory based on the Mie scattering theory. The calculated results show that both eff and eff are equal to zero at Dirac-like point, which means that the effective index neff is zero and the effective impedance Zeff is 1. The lattice structure of such a self-assembled photonic crystal will change with the external magnetic field, leading to the disappearance of Dirac-like point. However, when 143.6 OeH 152.4 Oe (1 Oe=79.5775 A/m), |neff | can keep less than 0.05 under the condition of Zeff = 1. Correspondingly, the operating frequency will change from 0.75 to 0.716. The model is verified by the numerical simulations (COMSOL Multiphysics) and the theoretical results agree well with the numerical ones.
      通信作者: 耿滔, Tao_Geng@hotmail.com
    • 基金项目: 国家重点基础研究发展计划(批准号: 2015CB352001)、国家重大科学仪器设备专项子任务(批准号: 2012YQ17000408)、国家自然科学基金(批准号: 61378035)、上海市自然科学基金(批准号: 14ZR1428500)和浙江省151人才计划(批准号: 12-2-008)资助的课题.
      Corresponding author: Geng Tao, Tao_Geng@hotmail.com
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB352001), the Special-Funded Program on National Key Scientific Instruments and Equipment Development of China (Grant No. 2012YQ17000408), the National Nature Science Foundation of China (Grant No. 61378035), the Basic Research Program of Shanghai, China (Grant No. 14ZR1428500), and the 151 Talent Project of Zhejiang Province, China (Grant No. 12-2-008).
    [1]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [2]

    Jin L, Zhu Q Y, Fu Y Q 2013 Chin. Phys. B 22 094102

    [3]

    Chen J, Wang Y, Jia B, Geng T, Li X, Feng L, Qian W, Liang B, Zhang X, Gu M, Zhuang S 2011 Nat. Photon. 5 239

    [4]

    Huang X, Lai L, Hang Z H, Zheng H, Chan Z T 2011 Nat. Mater. 10 582

    [5]

    Kocaman S, Aras M S, Hsieh P, McMillan J F, Biris C G, Panoiu N C, Yu M B, Kwong D L, Stein A, Wong C W 2011 Nat. Photon. 5 499

    [6]

    Liu R, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903

    [7]

    Mocella V, Cabrini S, Chang A S P, Dardano P, Moretti L, Rendina I, Olynick D, Harteneck B, Dhuey S 2009 Phys. Rev. Lett. 102 133902

    [8]

    Zhao H, Shen Y F, Zhang Z J 2014 Acta Phys. Sin. 63 174204 (in Chinese) [赵浩, 沈义峰, 张中杰 2014 物理学报 63 174204]

    [9]

    Lin H X, Yu X N, Liu S Y 2015 Acta Phys. Sin. 64 034203 (in Chinese) [林海笑, 俞昕宁, 刘士阳 2015 物理学报 64 034203]

    [10]

    Alu A, Silveirinha M G, Salandrino A, Engheta N 2007 Phys. Rev. B 75 155410

    [11]

    Hao J, Yan W, Qiu M 2010 Appl. Phys. Lett. 96 101109

    [12]

    Suchowski H, O'Brien K, Wong Z J, Salandrino A, Yin X, Zhang X 2013 Science 342 1223

    [13]

    Ge J, Yin Y 2008 Adv. Mater. 20 3485

    [14]

    Kim H, Ge J, Kim J, Choi S E, Lee H, Park W, Yin Y, Kwon S 2009 Nat. Photon. 3 534

    [15]

    Horng H E, Hong C Y, Yang S Y, Yang H C 2003 Appl. Phys. Lett. 82 2434

    [16]

    Yang S Y, Chieh J J, Horng H E, Hong C Y, Yang H C 2004 Appl. Phys. Lett. 84 5204

    [17]

    Wen W, Zhang L, Sheng P 2000 Phys. Rev. Lett. 85 5464

    [18]

    Buchenau U, Mller I 1972 Solid. State. Commun. 11 1291

    [19]

    Wu Y, Li J, Zhang Z Q, Chan C T 2006 Phys. Rev. B 74 085111

    [20]

    Geng T, Wang Y, Wang X, Dong X M 2015 Acta Phys. Sin. 64 154210 (in Chinese) [耿滔, 王岩, 王新, 董祥美 2015 物理学报 64 154210]

    [21]

    Leger J R, Swanson G J 1990 Opt. Lett. 15 288

  • [1]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [2]

    Jin L, Zhu Q Y, Fu Y Q 2013 Chin. Phys. B 22 094102

    [3]

    Chen J, Wang Y, Jia B, Geng T, Li X, Feng L, Qian W, Liang B, Zhang X, Gu M, Zhuang S 2011 Nat. Photon. 5 239

    [4]

    Huang X, Lai L, Hang Z H, Zheng H, Chan Z T 2011 Nat. Mater. 10 582

    [5]

    Kocaman S, Aras M S, Hsieh P, McMillan J F, Biris C G, Panoiu N C, Yu M B, Kwong D L, Stein A, Wong C W 2011 Nat. Photon. 5 499

    [6]

    Liu R, Cheng Q, Hand T, Mock J J, Cui T J, Cummer S A, Smith D R 2008 Phys. Rev. Lett. 100 023903

    [7]

    Mocella V, Cabrini S, Chang A S P, Dardano P, Moretti L, Rendina I, Olynick D, Harteneck B, Dhuey S 2009 Phys. Rev. Lett. 102 133902

    [8]

    Zhao H, Shen Y F, Zhang Z J 2014 Acta Phys. Sin. 63 174204 (in Chinese) [赵浩, 沈义峰, 张中杰 2014 物理学报 63 174204]

    [9]

    Lin H X, Yu X N, Liu S Y 2015 Acta Phys. Sin. 64 034203 (in Chinese) [林海笑, 俞昕宁, 刘士阳 2015 物理学报 64 034203]

    [10]

    Alu A, Silveirinha M G, Salandrino A, Engheta N 2007 Phys. Rev. B 75 155410

    [11]

    Hao J, Yan W, Qiu M 2010 Appl. Phys. Lett. 96 101109

    [12]

    Suchowski H, O'Brien K, Wong Z J, Salandrino A, Yin X, Zhang X 2013 Science 342 1223

    [13]

    Ge J, Yin Y 2008 Adv. Mater. 20 3485

    [14]

    Kim H, Ge J, Kim J, Choi S E, Lee H, Park W, Yin Y, Kwon S 2009 Nat. Photon. 3 534

    [15]

    Horng H E, Hong C Y, Yang S Y, Yang H C 2003 Appl. Phys. Lett. 82 2434

    [16]

    Yang S Y, Chieh J J, Horng H E, Hong C Y, Yang H C 2004 Appl. Phys. Lett. 84 5204

    [17]

    Wen W, Zhang L, Sheng P 2000 Phys. Rev. Lett. 85 5464

    [18]

    Buchenau U, Mller I 1972 Solid. State. Commun. 11 1291

    [19]

    Wu Y, Li J, Zhang Z Q, Chan C T 2006 Phys. Rev. B 74 085111

    [20]

    Geng T, Wang Y, Wang X, Dong X M 2015 Acta Phys. Sin. 64 154210 (in Chinese) [耿滔, 王岩, 王新, 董祥美 2015 物理学报 64 154210]

    [21]

    Leger J R, Swanson G J 1990 Opt. Lett. 15 288

计量
  • 文章访问数:  4030
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-06
  • 修回日期:  2015-08-26
  • 刊出日期:  2016-01-05

基于磁流体光子晶体的可调谐近似零折射率研究

  • 1. 上海市现代光学系统重点实验室, 教育部光学仪器与系统工程研究中心, 上海理工大学光电信息与计算机工程学院, 上海 200093;
  • 2. 杭州电子科技大学电子信息学院, 杭州 310018
  • 通信作者: 耿滔, Tao_Geng@hotmail.com
    基金项目: 国家重点基础研究发展计划(批准号: 2015CB352001)、国家重大科学仪器设备专项子任务(批准号: 2012YQ17000408)、国家自然科学基金(批准号: 61378035)、上海市自然科学基金(批准号: 14ZR1428500)和浙江省151人才计划(批准号: 12-2-008)资助的课题.

摘要: 基于典型水基Fe3O4磁流体, 建立了工作频率可调的近似零折射率磁流体光子晶体的理论模型. 这种近似零折射率材料具有与自由空间阻抗相匹配的优点, 更重要的是其工作频率可由外磁场的大小来调节. 在满足等效折射率的绝对值小于0.05的条件下, 材料的归一化工作频率可由0.716变化到0.750.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回