搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带多孔硅表面缺陷腔的半无限光子晶体Tamm态及其折射率传感机理

陈颖 范卉青 卢波

引用本文:
Citation:

带多孔硅表面缺陷腔的半无限光子晶体Tamm态及其折射率传感机理

陈颖, 范卉青, 卢波

Tamm state of semi-infinite photonic crystal based on surface defect cavity with porous silicon and its refractive index sensing mechanism

Chen Ying, Fan Hui-Qing, Lu Bo
PDF
导出引用
  • 结合表面缺陷半无限光子晶体Tamm态与多孔硅光学传感机理, 在光子晶体表面缺陷腔中引入多孔硅, 并利用其高效的承载机制, 提出基于多孔硅表面缺陷光子晶体Tamm态的折射率传感结构. 在半无限光子晶体中缺陷腔与原来的周期性分层介质结构的界面上存在Tamm态, 通过入射角度调制使其在缺陷腔中实现多次全反射, 并在缺陷腔中加入吸收介质, 使谐振波长在缺陷腔中完成衰荡, 从而在反射谱中得到缺陷峰; 调整光子晶体参数, 使缺陷峰的半高全宽得到优化, 提高其品质因数(Q值); 在此基础上, 根据Goos-Hänchen相位移与谐振波长的关系, 建立由待测样本折射率改变所导致的多孔硅表面吸附层有效折射率变化与缺陷峰值波长漂移之间的关系模型, 并分析其折射率传感特性. 结果表明, 此生物传感结构Q值为1429, 灵敏度为546.67 nm/RIU, 证明了该传感结构的有效性, 可为高Q值和高灵敏度折射率传感器的设计提供一定的理论参考.
    A refractive index sensing structure based on the Tamm state of photonic crystal with surface defect is proposed by combing the Tamm state of semi-infinite photonic crystal with the optical sensing mechanism of porous silicon, in which the efficient bearing mechanism of the porous silicon is introduced into the surface defect cavity. The existence of Tamm state is demonstrated at the edge between the defect cavity and the periodical photonic crystal structure, and the total reflection in the defect cavity is formed by adjusting the incident angle. The resonant defect peak is obtained in the reflection spectrum by adding an absorbing medium into the defect cavity in order to reduce the reflectivity of the resonant wavelength. The full width at half maximum and the quality factor (Q value) can be optimized by adjusting the parameters of photonic crystal. Based on those results, according to the relationship between Goos-Hänchen phase shift and the resonant wavelength, the model for the relationship between the resonant wavelength and the effective refractive index variation of porous silicon adsorbing layer caused by the change of the refractive index of the sample is established, and its refractive index sensing characteristics are analyzed. The numerical simulation results show that the Q value can attain to 1429 and the sensitivity is about 546.67 nm·RIU-1, which can demonstrate the effectiveness of the structure design and provide some theoretical references for designing the refractive index sensors with high Q values and sensitivities.
    • 基金项目: 国家自然科学基金(批准号: 61201112, 61172044)、河北省自然科学基金(批准号: F2013203250, F2012203169)和中国博士后科学基金(批准号: 2012M510765)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61201112, 61172044), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2013203250, F2012203169), and the China Postdoctoral Science Foundation (Grant No. 2012M510765).
    [1]

    Zhang H Y, Yang L Q, Meng L, Nie J C, Ning T Y, Liu W M, Sun J Y, Wang P F 2012 Chin. Phys. B 21 020601

    [2]

    Zhang D C, Yan Y R, Li Q, Yu T X, Cheng W, Wang L, Ju H X, Ding S J 2012 J. Biotechnol. 160 123

    [3]

    Endo T, Ozawa S, Okuda N, Yanagida Y, Tanaka S, Hatsuzawa T 2010 Sens. Actuat. B: Chemical 148 269

    [4]

    Li Y H, Yan Y R, Lei Y N, Zhao D, Yuan T X, Zhang D C, Cheng W, Ding S J 2014 Colloids and Surfaces B: Biointerfaces 120 15

    [5]

    Chen F F, Fei W J, Sun L, Li Q H, Di J W, Wu Y 2014 Sens. Actuat. B: Chemical 191 337

    [6]

    Maharana P K, Jha R 2012 Sens. Actuat. B: Chemical 169 161

    [7]

    Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205 (in Chinese) [陈颖, 王文跃, 于娜 2014 物理学报 63 034205]

    [8]

    Feng S, Wang Y Q 2011 Chin. Phys. B 20 104207

    [9]

    Derbali J, Abdel Malek F, Bouchriha H 2013 Optik 124 3936

    [10]

    Jiang B, Liu A J, Chen W, Xing M X, Zhou W J, Zheng W H 2010 Acta Phys. Sin. 59 8548 (in Chinese) [江斌, 刘安金, 陈微, 邢名欣, 周文君, 郑婉华 2010 物理学报 59 8548]

    [11]

    Zhang H Y, Jia Z H, L X Y, Zhou J, Chen L L, Liu R X, Ma J 2013 Biosens. Bioelectron. 44 89

    [12]

    Wu C, Rong G G, Xu J T, Pan S F, Zhu Y X 2012 Physica E 44 1787

    [13]

    Rostami A, Khezri M, Golmohammadi S 2012 Optik 123 847

    [14]

    Zhang D L, Cherkaev E, Lamoureux M P 2011 Appl. Math. Computat. 217 7092

    [15]

    Sun P, Hu M, Liu B, Sun F Y, Xu L J 2011 Acta Phys. Sin. 60 057303 (in Chinese) [孙鹏, 胡明, 刘博, 孙凤云, 许路加 2011 物理学报 60 057303]

  • [1]

    Zhang H Y, Yang L Q, Meng L, Nie J C, Ning T Y, Liu W M, Sun J Y, Wang P F 2012 Chin. Phys. B 21 020601

    [2]

    Zhang D C, Yan Y R, Li Q, Yu T X, Cheng W, Wang L, Ju H X, Ding S J 2012 J. Biotechnol. 160 123

    [3]

    Endo T, Ozawa S, Okuda N, Yanagida Y, Tanaka S, Hatsuzawa T 2010 Sens. Actuat. B: Chemical 148 269

    [4]

    Li Y H, Yan Y R, Lei Y N, Zhao D, Yuan T X, Zhang D C, Cheng W, Ding S J 2014 Colloids and Surfaces B: Biointerfaces 120 15

    [5]

    Chen F F, Fei W J, Sun L, Li Q H, Di J W, Wu Y 2014 Sens. Actuat. B: Chemical 191 337

    [6]

    Maharana P K, Jha R 2012 Sens. Actuat. B: Chemical 169 161

    [7]

    Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63 034205 (in Chinese) [陈颖, 王文跃, 于娜 2014 物理学报 63 034205]

    [8]

    Feng S, Wang Y Q 2011 Chin. Phys. B 20 104207

    [9]

    Derbali J, Abdel Malek F, Bouchriha H 2013 Optik 124 3936

    [10]

    Jiang B, Liu A J, Chen W, Xing M X, Zhou W J, Zheng W H 2010 Acta Phys. Sin. 59 8548 (in Chinese) [江斌, 刘安金, 陈微, 邢名欣, 周文君, 郑婉华 2010 物理学报 59 8548]

    [11]

    Zhang H Y, Jia Z H, L X Y, Zhou J, Chen L L, Liu R X, Ma J 2013 Biosens. Bioelectron. 44 89

    [12]

    Wu C, Rong G G, Xu J T, Pan S F, Zhu Y X 2012 Physica E 44 1787

    [13]

    Rostami A, Khezri M, Golmohammadi S 2012 Optik 123 847

    [14]

    Zhang D L, Cherkaev E, Lamoureux M P 2011 Appl. Math. Computat. 217 7092

    [15]

    Sun P, Hu M, Liu B, Sun F Y, Xu L J 2011 Acta Phys. Sin. 60 057303 (in Chinese) [孙鹏, 胡明, 刘博, 孙凤云, 许路加 2011 物理学报 60 057303]

  • [1] 祁云平, 贾迎君, 张婷, 丁京徽, 尉净雯, 王向贤. 基于Fano共振的MIM-石墨烯纳米管混合结构动态可调折射率传感器. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220652
    [2] 祁云平, 张婷, 郭嘉, 张宝和, 王向贤. 基于乙醇密封共振腔金属-介质-金属波导的高性能温度和折射率两用传感器. 物理学报, 2020, 69(16): 167301. doi: 10.7498/aps.69.20200405
    [3] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [4] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤. 基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器. 物理学报, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [5] 耿滔, 吴娜, 董祥美, 高秀敏. 基于磁流体光子晶体的可调谐近似零折射率研究. 物理学报, 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [6] 周长柱, 王晨, 李志远. 硅基二维平板光子晶体高Q微腔的制作和光谱测量. 物理学报, 2012, 61(1): 014214. doi: 10.7498/aps.61.014214
    [7] 曾志文, 刘海涛, 张斯文. 基于Fabry-Perot模型设计亚波长金属狭缝阵列光学异常透射折射率传感器. 物理学报, 2012, 61(20): 200701. doi: 10.7498/aps.61.200701
    [8] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [9] 李岩, 傅海威, 邵敏, 李晓莉. 石墨点阵柱状光子晶体共振腔的温度特性. 物理学报, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [10] 孔延梅, 高超群, 景玉鹏, 陈大鹏. 基于光子晶体分光的气敏传感器研究. 物理学报, 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [11] 刘丽想, 董丽娟, 刘艳红, 杨春花, 杨成全, 石云龙. 平均折射率为零的光子晶体中缺陷模频率特性的实验研究. 物理学报, 2011, 60(8): 084218. doi: 10.7498/aps.60.084218
    [12] 童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳, 胡晓娟. 基于光子晶体自准直环形谐振腔的全光均分束器. 物理学报, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [13] 王宝强, 徐晨, 刘英明, 解意洋, 刘发, 赵振波, 周康, 沈光地. 光子晶体垂直腔面发射激光器的电流分布研究. 物理学报, 2010, 59(12): 8542-8547. doi: 10.7498/aps.59.8542
    [14] 林旭升, 吴立军, 郭 旗, 胡 巍, 兰 胜. 条形耦合波导对光子晶体耦合缺陷模的影响. 物理学报, 2008, 57(12): 7717-7724. doi: 10.7498/aps.57.7717
    [15] 陈宪锋, 蒋美萍, 沈小明, 金 铱, 黄正逸. 一维多缺陷光子晶体的缺陷模. 物理学报, 2008, 57(9): 5709-5712. doi: 10.7498/aps.57.5709
    [16] 董海霞, 江海涛, 杨成全, 石云龙. 含双负缺陷的一维光子晶体耦合腔的杂质带特性. 物理学报, 2006, 55(6): 2777-2780. doi: 10.7498/aps.55.2777
    [17] 周 梅, 陈效双, 徐 靖, 曾 勇, 吴砚瑞, 陆 卫, 王连卫, 陈 瑜. 中红外波段硅基两维光子晶体的光子带隙. 物理学报, 2005, 54(1): 411-415. doi: 10.7498/aps.54.411
    [18] 冯立娟, 江海涛, 李宏强, 张冶文, 陈 鸿. 光子晶体耦合腔波导的色散特性. 物理学报, 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
    [19] 周 梅, 陈效双, 徐 靖, 陆 卫. 硅基两维光子晶体的制备和光子带隙特性. 物理学报, 2004, 53(10): 3583-3586. doi: 10.7498/aps.53.3583
    [20] 吕 明, 徐少辉, 张松涛, 何 钧, 熊祖洪, 邓振波, 丁训民. 基于多孔硅分布Bragg反射镜的有机微腔的光学性质. 物理学报, 2000, 49(10): 2083-2088. doi: 10.7498/aps.49.2083
计量
  • 文章访问数:  3139
  • PDF下载量:  554
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-04
  • 修回日期:  2014-07-04
  • 刊出日期:  2014-12-05

带多孔硅表面缺陷腔的半无限光子晶体Tamm态及其折射率传感机理

  • 1. 燕山大学电气工程学院, 测试计量技术及仪器河北省重点实验室, 秦皇岛 066004
    基金项目: 国家自然科学基金(批准号: 61201112, 61172044)、河北省自然科学基金(批准号: F2013203250, F2012203169)和中国博士后科学基金(批准号: 2012M510765)资助的课题.

摘要: 结合表面缺陷半无限光子晶体Tamm态与多孔硅光学传感机理, 在光子晶体表面缺陷腔中引入多孔硅, 并利用其高效的承载机制, 提出基于多孔硅表面缺陷光子晶体Tamm态的折射率传感结构. 在半无限光子晶体中缺陷腔与原来的周期性分层介质结构的界面上存在Tamm态, 通过入射角度调制使其在缺陷腔中实现多次全反射, 并在缺陷腔中加入吸收介质, 使谐振波长在缺陷腔中完成衰荡, 从而在反射谱中得到缺陷峰; 调整光子晶体参数, 使缺陷峰的半高全宽得到优化, 提高其品质因数(Q值); 在此基础上, 根据Goos-Hänchen相位移与谐振波长的关系, 建立由待测样本折射率改变所导致的多孔硅表面吸附层有效折射率变化与缺陷峰值波长漂移之间的关系模型, 并分析其折射率传感特性. 结果表明, 此生物传感结构Q值为1429, 灵敏度为546.67 nm/RIU, 证明了该传感结构的有效性, 可为高Q值和高灵敏度折射率传感器的设计提供一定的理论参考.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回