搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Fano共振的金属-绝缘体-金属-石墨烯纳米管混合结构动态可调折射率传感器

祁云平 贾迎君 张婷 丁京徽 尉净雯 王向贤

引用本文:
Citation:

基于Fano共振的金属-绝缘体-金属-石墨烯纳米管混合结构动态可调折射率传感器

祁云平, 贾迎君, 张婷, 丁京徽, 尉净雯, 王向贤

Dynamically tunable refractive index sensor based on Fano resonance with metal-insulator-metal-graphene nanotube hybrid structure

Qi Yun-Ping, Jia Ying-Jun, Zhang Ting, Ding Jing-Hui, Wei Jing-Wen, Wang Xiang-Xian
PDF
HTML
导出引用
  • 为了解决传统金属-绝缘体-金属(metal-insulator-metal, MIM)波导结构传感器不可动态调控的问题, 本文将石墨烯纳米管引入MIM波导耦合圆环谐振腔结构, 设计了一种动态可调的MIM-石墨烯纳米管混合结构折射率传感器. 采用有限元法对系统的传输特性、电场分布和磁场分布进行数值研究, 并通过多模干涉耦合模理论进行分析验证. 结果表明, Fano共振源自于TM10腔共振模式和石墨烯等离子体电共振模式之间的相干耦合. 通过改变石墨烯的化学势可以在较大波长范围内动态调谐Fano共振的谐振波长和线宽, 从而实现折射率传感器的动态调控. 在最佳结构参数下, 传感器灵敏度可达1250 nm/RIU. 与传统的MIM波导结构相比, 该器件具有结构简单、动态可调、易于加工且工作波段范围大等诸多优点, 对设计可动态调控的高性能纳米光子集成器件具有一定的指导意义.
    In practical applications, the performances of conventional metal-insulator-metal (MIM) waveguide structured optical devices cured during fabrication are not dynamically tunable. In order to address the problem that such devices are not dynamically tunable, based on the excellent optoelectronic properties of graphene materials, graphene nanotubes are induced into the metal-insulator-metal waveguide coupled circular resonant cavity structure, thus designing a dynamically tunable MIM-graphene nanotube hybrid structure refractive index sensor in this work. The finite element method (FEM) is used to numerically study the transmission characteristics, electric field distribution and magnetic field distribution of the system, and the theoretical analysis is performed by multimode interference coupled mode theory (MICMT) to verify its correctness. The results show that after adding graphene nanotube to the MIM waveguide coupled ring resonant cavity structure, a Fano resonance peak appears in this system, which originates from the coherent coupling between the TM10 cavity resonance mode and the graphene plasmonic electrical resonance mode. The sensor can dynamically tune the resonance wavelength and linewidth of Fano resonance in a wide wavelength range by changing the chemical potential of graphene, thus realizing the performance tuning of the refractive index sensor. Hence, the problem that the conventional plasma refractive index sensor is not dynamically tunable issolved. In addition, the influence of the geometrical parameters of the structure on the sensing performance of this system is also studied in detail. The sensor sensitivity increases up to 1250 nm/RIU and the quality factor rises up to 42.4 RIU–1 at the optimal structural parameters. Compared with the traditional metal-insulator-metal waveguide structure design, this device has many merits such as wide operating band range, easy processing and dynamic tunability, which is a guideline for designing the dynamically tunable high performance nano-photonic integrated devices.
      通信作者: 祁云平, yunpqi@126.com
    • 基金项目: 国家自然科学基金(批准号: 62165013, 61865008)和西北师范大学青年教师科研能力提升计划(批准号: NWNU-LKQN2020-11)资助的课题.
      Corresponding author: Qi Yun-Ping, yunpqi@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62165013, 61865008) and the Northwest Normal University Young Teachers’ Scientific Research Capability Upgrading Program, China (Grant No. NWNU-LKQN2020-11).
    [1]

    Zafar R, Salim M 2015 IEEE Sens. J. 15 11Google Scholar

    [2]

    Yuan M R, Lu Y C, Zhang Y, Zhang Z Y, Li Y F, Liu H C, Zhang X X, Han J G, Zhang W L 2020 Opt. Express 28 1987Google Scholar

    [3]

    Qi Y P, Ding J H, Zhang T, Liu W M, Wang L Y, Wang X X 2021 EPL 134 67001Google Scholar

    [4]

    Chen J, Nie H, Tang C J, Cui Y H, Yan B, Zhang Z Y, Kong Y R, Xu Z J, Cai P G 2019 Appl. Phys. Express 12 052015Google Scholar

    [5]

    Su W, Ding Y M, Luo Y L, Liu Y 2020 Results Phys. 16 102833Google Scholar

    [6]

    Wang M M, Zhang M, Wang Y F, Zhao R J, Yan S B 2019 Sensors 19 791Google Scholar

    [7]

    Chen H W, Qi Y P, Ding J H, Yuan Y J, Tian Z T, Wang X X 2022 Chin. Phys. B 31 034211Google Scholar

    [8]

    Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photon. 11 543Google Scholar

    [9]

    Fang Y H, Wen K H, Li Z F, Wu B Y, Guo Z C 2020 Mod. Phys. Lett. B 34 16Google Scholar

    [10]

    Yang X Y, Hua E, Su H, Guo J, Yan S B 2020 Sensors 20 4125Google Scholar

    [11]

    Xie Y Y, He C, Li J C, Song T T, Zhang Z D, Mao Q R 2016 IEEE Photon. J. 8 4802512Google Scholar

    [12]

    Cheng Q, Wang S T, Lv J T, Liu N, Pang B 2020 Opt. Commun. 464 125393Google Scholar

    [13]

    Morozov Y M, Lapchuk A S, Fu M L, Kryuchyn A A, Huang H R, Le Z C 2018 Photonics Res. 6 149Google Scholar

    [14]

    Li S L, Zhang Y Y, Song X K, Wang Y L, Yu L 2016 Opt. Express 24 15351Google Scholar

    [15]

    Zhang Z D, Luo L, Xue C Y, Zhang W D, Yan S B 2016 Sensors 16 642Google Scholar

    [16]

    Liu Z H, Ding L Z, Yi J P, Wei Z C, Guo J P 2018 Optoelectron. Lett. 14 421Google Scholar

    [17]

    Xiao G L, Xu Y P, Yang H Y, Ou Z T, Chen J Y, Li H O, Liu X P, Zeng L Z, Li J Q 2021 Sensors 21 1164Google Scholar

    [18]

    Wang W, Meng Z, Liang R S, Chen S J, Ding L, Wang F Q, Liu H Z, Meng H Y, Wei Z C 2018 Opt. Commun. 415 130Google Scholar

    [19]

    Chen X, Fan W H, Song C 2018 Carbon 133 416Google Scholar

    [20]

    肖功利, 杨秀华, 杨宏艳, 窦婉滢, 徐俊林, 韦清臣, 李海鸥, 张法碧, 李琦, 陈永和, 傅涛, 孙堂友 2019 光学学报 39 0728011Google Scholar

    Xiao G L, Yang X H, Yang H Y, Dou W Y, Xu J L, Wei Q C, Li H O, Zhang F B, Li Q, Chen Y H, Fu T, Sun T Y 2019 Acta Opt. Sin. 39 0728011Google Scholar

    [21]

    Dai X Y, Ruan B X, Xiang Y J 2021 Biosensors 11 400Google Scholar

    [22]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [23]

    García de Abajo F J 2014 ACS Photonics 1 135Google Scholar

    [24]

    Yan X C, Wang T, Han X, Xiao S Y, Zhu Y J, Wang Y B 2016 Plasmonics 12 1449Google Scholar

    [25]

    Yuan Y J, Qi Y P, Zhang B H, Ding J H, Liu W M, Chen H W, Wang X X 2022 Phys. Scr. 97 025507Google Scholar

    [26]

    Liu Q, Liu M W, Zhan S P, Wu L X, Xie S X, Chen Z H, Zhang Y C 2019 Plasmonics 14 1005Google Scholar

    [27]

    Wang P F, Ding M, Murugan G S, Bo L, Guan C Y, Semenova Y, Wu Q, Farrell G, Brambilla G 2014 Opt. Lett. 39 5208Google Scholar

    [28]

    孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸 2020 物理学报 69 014203Google Scholar

    Meng L J, Wang M Y, Shen Y, Yang Y, Xu W B, Zhang L, Wang K Y 2020 Acta Phys. Sin. 69 014203Google Scholar

    [29]

    祁云平, 张婷, 郭嘉, 张宝和, 王向贤 2020 物理学报 69 167301Google Scholar

    Qi Y P, Zhang T, Guo J, Zhang B H, Wang X X 2020 Acta Phys. Sin. 69 167301Google Scholar

    [30]

    Lu H, Zeng C, Zhang Q M, Liu X M, Hossain M M, Reineck P, Gu M 2015 Sci. Rep. 5 8443Google Scholar

    [31]

    Falkovsky L A 2008 J. Phys. :Conf. Ser. 129 012004Google Scholar

    [32]

    Kuzmenko A B, van Heumen E, Carbone F, van der Marel D 2008 Phys. Rev. Lett. 100 117401Google Scholar

    [33]

    Wang C L, Wang Y Q, Hu H, Liu D J, Gao D L, Gao L 2019 Opt. Express 27 35925Google Scholar

    [34]

    Yan X, Fu R, Cheng T L, Li S G 2021 Sensors 21 3782Google Scholar

    [35]

    Cen C L, Chen Z Q, Xu D Y, Jiang L Y, Chen X F, Yi Z, Wu P H, Li G F, Yi Y G 2020 Nanomaterials 10 95Google Scholar

    [36]

    Zhang Y J, Kuang Y Q, Zhang Z D, Tang Y, Han J Q, Wang R B, Cui J G, Hou Y L, Liu W Y 2018 Appl. Phys. A 125 13Google Scholar

    [37]

    Chen Y Q, Bi K X, Wang Q J, Zheng M J, Liu Q, Han Y X, Yang J B, Chang S L, Zhang G H, Duan H G 2016 ACS Nano 10 11228Google Scholar

    [38]

    王文雨, 张帅国, 冯宇, 米杰 2020 天然气化工(C1化学与化工) 45 123Google Scholar

    Wang W Y, Zhang S G, Feng Y, Mi J 2020 Natural Gas Chemical Industry 45 123Google Scholar

  • 图 1  MIM-石墨烯纳米管混合结构示意图 (a) 三维模型; (b) 二维模型

    Fig. 1.  The schematic of designed MIM-graphene nanotube: (a) 3D model; (b) 2D model.

    图 2  (a) 加入石墨烯纳米管结构前后的透射光谱对比; (b)—(m) 不同波长对应波峰、波谷处的磁场图(上)和电场图(下)

    Fig. 2.  (a) Comparison of transmission spectra with and without incorporated graphene nanotube structures; (b)–(m) magnetic field distribution (top) and electric field distribution (bottom) at the corresponding peaks and troughs at different wavelengths.

    图 3  MIM-石墨烯纳米管混合结构的仿真计算和理论分析对比

    Fig. 3.  Comparison of simulation calculation and theoretical analysis of MIM-graphene nanotube hybrid structure.

    图 4  (a) 随石墨烯化学势$ {\mu _{\text{c}}} $变化的透射光谱图; (b)—(e) 改变$ {\mu _{\text{c}}} $时仅峰II和峰III的透射光谱对比图; ${\mu _{\text{c}}} = 0.65{\text{ eV}}$, 峰II (b-l)和峰III (b-r) 的电场图; ${\mu _{\text{c}}} = 0.75{\kern 1 pt} {\text{ }}{\kern 1 pt} {\text{eV}}$, 峰II (c-l) 和峰III (c-r) 的电场图; ${\mu _{\text{c}}} = 0.85{\kern 1 pt} {\kern 1 pt} {\text{ eV}}$, 峰III (d-l) 和峰II (d-r) 的电场图; ${\mu _{\text{c}}} = 0.95{\text{ }}{\kern 1 pt} {\kern 1 pt} {\text{eV}}$, 峰III (e-l) 和峰 II (e-r) 的电场图; (f) 透射强度随入射波长及$ {\mu _{\text{c}}} $变化的光谱图

    Fig. 4.  (a) Transmission spectra when changing the chemical potential of graphene; (b)–(e) comparison of transmission spectra of Peak II and Peak III only when changing the chemical potential of graphene; the electric field diagram of Peak II (b-l) and Peak III (b-r) at ${\mu _{\text{c}}} = 0.65{\text{ eV}}$; the electric field diagram of Peak II (c-l) and Peak III (c-r) at${\mu _{\text{c}}} = 0.75{\kern 1 pt} {\text{ }}{\kern 1 pt} {\text{eV}}$; the electric field diagram of Peak III (d-l) and Peak II (d-r) at${\mu _{\text{c}}} = 0.85{\kern 1 pt} {\kern 1 pt} {\text{ eV}}$; the electric field diagram of Peak III (e-l) and Peak II (e-r) at${\mu _{\text{c}}} = 0.95{\text{ }}{\kern 1 pt} {\kern 1 pt} {\text{eV}}$; (f) spectra of the transmitted intensity with the variation incident wavelength and the chemical potential of graphene.

    图 5  3个峰的灵敏度随$ {\mu _{\text{c}}} $的变化

    Fig. 5.  Sensitivity trends of three peaks when changing $ {\mu _{\text{c}}} $.

    图 6  (a), (b) 改变RR1的透射光谱; (c) 改变R1时仅峰II和峰III的透射光谱(矩形框为Lorentz峰, 圆形框为Fano峰)

    Fig. 6.  (a), (b) Transmission spectra with different parameters R and R1; (c) transmission spectra of Peak II and Peak III only with different parameters R1 (Rectangular frame is Lorentz peak, round frame is Fano peak).

    图 7  3个峰的灵敏度随参数RR1的变化

    Fig. 7.  Sensitivity trends of the three peaks with different parameters R and R1.

    图 8  改变折射率$n$的透射光谱对比图

    Fig. 8.  Comparison of transmission spectra with different refractive indexes n.

    表 1  拟合参数数值

    Table 1.  Fitting parameter values.

    $\lambda $/nm${\tau _m}$/fs${\tau _{m0}}$/fs${\varphi _m}$
    55818.05855176.34299–0.73564π
    1041125.52873260.883300.61392π
    10955.922700.19382–0.73322π
    1114447.50227374.444850.60155π
    下载: 导出CSV
  • [1]

    Zafar R, Salim M 2015 IEEE Sens. J. 15 11Google Scholar

    [2]

    Yuan M R, Lu Y C, Zhang Y, Zhang Z Y, Li Y F, Liu H C, Zhang X X, Han J G, Zhang W L 2020 Opt. Express 28 1987Google Scholar

    [3]

    Qi Y P, Ding J H, Zhang T, Liu W M, Wang L Y, Wang X X 2021 EPL 134 67001Google Scholar

    [4]

    Chen J, Nie H, Tang C J, Cui Y H, Yan B, Zhang Z Y, Kong Y R, Xu Z J, Cai P G 2019 Appl. Phys. Express 12 052015Google Scholar

    [5]

    Su W, Ding Y M, Luo Y L, Liu Y 2020 Results Phys. 16 102833Google Scholar

    [6]

    Wang M M, Zhang M, Wang Y F, Zhao R J, Yan S B 2019 Sensors 19 791Google Scholar

    [7]

    Chen H W, Qi Y P, Ding J H, Yuan Y J, Tian Z T, Wang X X 2022 Chin. Phys. B 31 034211Google Scholar

    [8]

    Limonov M F, Rybin M V, Poddubny A N, Kivshar Y S 2017 Nat. Photon. 11 543Google Scholar

    [9]

    Fang Y H, Wen K H, Li Z F, Wu B Y, Guo Z C 2020 Mod. Phys. Lett. B 34 16Google Scholar

    [10]

    Yang X Y, Hua E, Su H, Guo J, Yan S B 2020 Sensors 20 4125Google Scholar

    [11]

    Xie Y Y, He C, Li J C, Song T T, Zhang Z D, Mao Q R 2016 IEEE Photon. J. 8 4802512Google Scholar

    [12]

    Cheng Q, Wang S T, Lv J T, Liu N, Pang B 2020 Opt. Commun. 464 125393Google Scholar

    [13]

    Morozov Y M, Lapchuk A S, Fu M L, Kryuchyn A A, Huang H R, Le Z C 2018 Photonics Res. 6 149Google Scholar

    [14]

    Li S L, Zhang Y Y, Song X K, Wang Y L, Yu L 2016 Opt. Express 24 15351Google Scholar

    [15]

    Zhang Z D, Luo L, Xue C Y, Zhang W D, Yan S B 2016 Sensors 16 642Google Scholar

    [16]

    Liu Z H, Ding L Z, Yi J P, Wei Z C, Guo J P 2018 Optoelectron. Lett. 14 421Google Scholar

    [17]

    Xiao G L, Xu Y P, Yang H Y, Ou Z T, Chen J Y, Li H O, Liu X P, Zeng L Z, Li J Q 2021 Sensors 21 1164Google Scholar

    [18]

    Wang W, Meng Z, Liang R S, Chen S J, Ding L, Wang F Q, Liu H Z, Meng H Y, Wei Z C 2018 Opt. Commun. 415 130Google Scholar

    [19]

    Chen X, Fan W H, Song C 2018 Carbon 133 416Google Scholar

    [20]

    肖功利, 杨秀华, 杨宏艳, 窦婉滢, 徐俊林, 韦清臣, 李海鸥, 张法碧, 李琦, 陈永和, 傅涛, 孙堂友 2019 光学学报 39 0728011Google Scholar

    Xiao G L, Yang X H, Yang H Y, Dou W Y, Xu J L, Wei Q C, Li H O, Zhang F B, Li Q, Chen Y H, Fu T, Sun T Y 2019 Acta Opt. Sin. 39 0728011Google Scholar

    [21]

    Dai X Y, Ruan B X, Xiang Y J 2021 Biosensors 11 400Google Scholar

    [22]

    Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [23]

    García de Abajo F J 2014 ACS Photonics 1 135Google Scholar

    [24]

    Yan X C, Wang T, Han X, Xiao S Y, Zhu Y J, Wang Y B 2016 Plasmonics 12 1449Google Scholar

    [25]

    Yuan Y J, Qi Y P, Zhang B H, Ding J H, Liu W M, Chen H W, Wang X X 2022 Phys. Scr. 97 025507Google Scholar

    [26]

    Liu Q, Liu M W, Zhan S P, Wu L X, Xie S X, Chen Z H, Zhang Y C 2019 Plasmonics 14 1005Google Scholar

    [27]

    Wang P F, Ding M, Murugan G S, Bo L, Guan C Y, Semenova Y, Wu Q, Farrell G, Brambilla G 2014 Opt. Lett. 39 5208Google Scholar

    [28]

    孟令俊, 王梦宇, 沈远, 杨煜, 徐文斌, 张磊, 王克逸 2020 物理学报 69 014203Google Scholar

    Meng L J, Wang M Y, Shen Y, Yang Y, Xu W B, Zhang L, Wang K Y 2020 Acta Phys. Sin. 69 014203Google Scholar

    [29]

    祁云平, 张婷, 郭嘉, 张宝和, 王向贤 2020 物理学报 69 167301Google Scholar

    Qi Y P, Zhang T, Guo J, Zhang B H, Wang X X 2020 Acta Phys. Sin. 69 167301Google Scholar

    [30]

    Lu H, Zeng C, Zhang Q M, Liu X M, Hossain M M, Reineck P, Gu M 2015 Sci. Rep. 5 8443Google Scholar

    [31]

    Falkovsky L A 2008 J. Phys. :Conf. Ser. 129 012004Google Scholar

    [32]

    Kuzmenko A B, van Heumen E, Carbone F, van der Marel D 2008 Phys. Rev. Lett. 100 117401Google Scholar

    [33]

    Wang C L, Wang Y Q, Hu H, Liu D J, Gao D L, Gao L 2019 Opt. Express 27 35925Google Scholar

    [34]

    Yan X, Fu R, Cheng T L, Li S G 2021 Sensors 21 3782Google Scholar

    [35]

    Cen C L, Chen Z Q, Xu D Y, Jiang L Y, Chen X F, Yi Z, Wu P H, Li G F, Yi Y G 2020 Nanomaterials 10 95Google Scholar

    [36]

    Zhang Y J, Kuang Y Q, Zhang Z D, Tang Y, Han J Q, Wang R B, Cui J G, Hou Y L, Liu W Y 2018 Appl. Phys. A 125 13Google Scholar

    [37]

    Chen Y Q, Bi K X, Wang Q J, Zheng M J, Liu Q, Han Y X, Yang J B, Chang S L, Zhang G H, Duan H G 2016 ACS Nano 10 11228Google Scholar

    [38]

    王文雨, 张帅国, 冯宇, 米杰 2020 天然气化工(C1化学与化工) 45 123Google Scholar

    Wang W Y, Zhang S G, Feng Y, Mi J 2020 Natural Gas Chemical Industry 45 123Google Scholar

  • [1] 李桑丫, 张艾霖, 徐欣, 吕涛, 王世康, 罗箐. 基于强流离子源的离子束溅射镀膜设备均匀性优化. 物理学报, 2024, 73(5): 058101. doi: 10.7498/aps.73.20231491
    [2] 刘远峰, 李斌成, 赵斌兴, 刘红. SiC光学材料亚表面缺陷的光热辐射检测. 物理学报, 2023, 72(2): 024208. doi: 10.7498/aps.72.20221303
    [3] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质. 物理学报, 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [4] 邱钰珺, 李亨宣, 李亚涛, 黄春朴, 李卫华, 张旭涛, 刘英光. 基于纳米点嵌入的界面导热性能优化. 物理学报, 2023, 72(11): 113102. doi: 10.7498/aps.72.20230314
    [5] 盛泉, 耿婧旎, 王爱华, 王盟, 齐岳, 刘俊杰, 付士杰, 史伟, 姚建铨. 基于猫眼逆反射器的大范围免调试激光器. 物理学报, 2023, 72(4): 044203. doi: 10.7498/aps.72.20221956
    [6] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [7] 赵颂, 周华, 王淑英, 韩非, 蒋斯涵, 沈向前. 基于金属纳米球等离增强的高效钙钛矿/硅电池设计. 物理学报, 2022, 71(3): 038801. doi: 10.7498/aps.71.20211585
    [8] 马聪, 刘斌, 梁宏. 耦合界面张力的三维流体界面不稳定性的格子Boltzmann模拟. 物理学报, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [9] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [10] 梁艳美, 陆博, 古华光. 利用双慢变量的快慢变量分离分析新脑皮层神经元Wilson模型的复杂电活动. 物理学报, 2022, 71(23): 230502. doi: 10.7498/aps.71.20221416
    [11] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [12] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [13] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [14] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [15] 李再东, 郭奇奇. 铁磁纳米线中磁化强度的磁怪波. 物理学报, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [16] 田梓聪, 郭遗敏, 胡晨岩, 王慧琴, 路翠翠. 宽带高效聚焦的片上集成纳米透镜. 物理学报, 2020, 69(24): 244201. doi: 10.7498/aps.69.20200948
    [17] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [18] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [19] 胡伟达, 李庆, 陈效双, 陆卫. 具有变革性特征的红外光电探测器. 物理学报, 2019, 68(12): 120701. doi: 10.7498/aps.68.20190281
    [20] 马堃, 陈展斌, 黄时中. 等离子体屏蔽效应对Ar16+基态和激发态能级的影响. 物理学报, 2019, 68(2): 023102. doi: 10.7498/aps.68.20181915
计量
  • 文章访问数:  2485
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 修回日期:  2022-05-05
  • 上网日期:  2022-08-26
  • 刊出日期:  2022-09-05

/

返回文章
返回