搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器

陈颖 谢进朝 周鑫德 张灿 杨惠 李少华

引用本文:
Citation:

基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器

陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华

Semi-closed T-shaped-disk waveguide filter based on surface-plasmon-induced transparency

Chen Ying, Xie Jin-Chao, Zhou Xin-De, Zhang Can, Yang Hui, Li Shao-Hua
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于表面等离子体激元的传输及耦合特性, 提出了一种半封闭T形波导侧耦合圆盘腔的金属-介质-金属波导滤波器结构. 应用有限元法研究了其传输特性. 结果表明, 在透射光谱中出现了基于等离子诱导透明(PIT)效应的窄带透射峰. 通过理论分析与模场分布有效阐释了PIT透明峰与两侧谷值的物理产生机理, 同时数值研究表明通过改变支节长度与圆盘谐振腔半径可调节滤波器共振波长, 通过外调制来改变结构介质折射率可实现滤波波长的近似线性调节. 进一步, 在圆盘腔中内嵌增益介质, 增强了其对光的局域能力, 加强了模式共振作用, 实现了压缩滤波通带带宽的同时有效地提高了结构透射率, 相比同类滤波器获得了更好的滤波性能. 研究结果为高分辨率窄带滤波器的设计提供了有效的理论参考.
    Filter is the core communication device in optical integrated chip. In recent years, plasma-induced transparency in surface plasmon (SPP) subwavelength waveguide photonic deviceshas become a research hotspot in the field of nano optics. The plasmon-induced transparency (PIT) is a phenomenon that the original absorption region produces a sharp transparent window due to the interaction among different resonant modes of SPPs, therefore, a higher resolution and quality factor surface plasmons can be obtained by using this feature to design a metal-medium-metal (MIM) waveguide structure filter. However, due to the Ohmic loss caused by metal parts, further research is needed on how to effectively improve transmission efficiency and achieve better frequency selection and filtering effect while reducing filter bandwidth in MIM waveguide filter. Based on the transmission and coupling characteristics of SPPs, an MIM waveguide filter with semi-closed T-waveguide side coupled disc cavity is proposed.Its transmission characteristics are studied by using the finite element method. The results show that a narrow-band transmission peak based on plasma-induced transparency appears in the transmission spectrum. Through theoretical analysis and mode field distribution, the physical mechanism of generating the PIT transparent peak and valley values on both sides is effectively explained. Compared with the traditional straight waveguide structure, the curved waveguide structure can generate the bilateral coupling effect, which can make resonant interaction stronger. Meanwhile, the numerical study shows that the approximately linear adjustment of filter wavelength can be achieved by changing the length of branches, the radius of the disk cavity and the refractive index of the medium in the cavity through external modulation. Further, the gain medium is embedded in the disk cavity, which enhances its local ability to emit light, strengthens the mode resonance effect, and realizes the compression filter pass-band bandwidth while effectively improving the structural transmittance, compared with similar filters. The research results provide an effective theoretical reference for designing the high resolution narrowband filter.
      通信作者: 陈颖, chenying@ysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61201112, 61475133)、河北省重点研发计划项目(批准号: 19273901D)、河北省自然科学基金(批准号: F2016203188)、中国博士后基金项目(批准号: 2018M630279)、河北省博士后择优资助项目(批准号: D2018003028)、河北省高等学校科学技术研究项目(批准号: ZD2018243)和中国国家留学基金(批准号: 201808130004)资助的课题
      Corresponding author: Chen Ying, chenying@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61201112, 61475133), the Key Research and Development Project of Hebei Province, China (Grant No. 19273901D), the Natural Science Foundation of Hebei Province, China (Grant No. F2016203188), the China Postdoctoral Science Foundation (Grant No. 2018M630279), the Post-Doctoral Research Projects in Hebei Province, China (Grant No. D2018003028), the Scientific Research Foundation of the Higher Education Institutions of Hebei Province, China (Grant No. ZD2018243), and the China National Scholarship Fund Project (Grant No. 201808130004)
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Ozbay E 2006 Science 311 189Google Scholar

    [3]

    Jun Z, Xu W J, Xu Z J, Fu D L, Song S X, Wei D Q 2017 Optik 134 187Google Scholar

    [4]

    Chen Y, Luo P, Zhao Z Y, He L, Cui X N 2017 Phys. Lett. A 381 3472Google Scholar

    [5]

    Liu Y, Zhou F, Yao B, Cao J, Mao Q H 2013 Plasmonics 8 1035Google Scholar

    [6]

    祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 物理学报 67 197301Google Scholar

    Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X Y 2018 Acta Phys. Sin. 67 197301Google Scholar

    [7]

    Zhang X Y, Hu A, Wen J Z, Zhang T, Xue X J, Zhou Y, Duley WW 2010 Opt. Express 18 18945Google Scholar

    [8]

    张志东, 赵亚男, 卢东, 熊祖洪, 张中月 2012 物理学报 61 187301Google Scholar

    Zhang Z D, Zhao Y N, Lu D, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 187301Google Scholar

    [9]

    Tao J, Huang X G, Lin X S, Chen J H, Zhang Q, Jin X P 2010 J. Opt. Soc. Am. 27 323Google Scholar

    [10]

    Yun B F, Hu G H, Cui Y P 2013 Plasmonics 8 267Google Scholar

    [11]

    Wang T B, Wen X W, Yin C P, Wang H Z 2009 Opt. Express 17 24096Google Scholar

    [12]

    Mei X, Huang X, Tao J, Zhu J H, Zhu Y J, Jin X P 2010 J. Opt. Soc. Am. B 27 2707Google Scholar

    [13]

    Wang L, Li W, Jiang X 2015 Opt. Lett. 40 2325Google Scholar

    [14]

    Chen J, Wang C, Zhang R, Xiao J 2012 Opt. Lett. 37 5133Google Scholar

    [15]

    杨韵茹, 关建飞 2016 物理学报 65 057301Google Scholar

    Yang Y R, Guan J F 2016 Acta Phys. Sin. 65 057301Google Scholar

    [16]

    Kim K Y, Cho Y K, Tae H S, Lee J H 2006 Opt. Express 14 320Google Scholar

    [17]

    Haus H A 1984 Waves and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall) pp56–59

    [18]

    Chremmos I 2009 J. Opt. Soc. Am. 26 2623Google Scholar

    [19]

    Zhang Q, Huang X G, Lin X S, Tao J, Jin X P 2009 Opt. Express 17 7549Google Scholar

    [20]

    Vlasov Y A, O'Boyle M, Hamann H F, McNab S J 2005 Nature 438 65Google Scholar

    [21]

    Nezhad M, Tetz K, Fainman Y 2004 Opt. Express 12 4072Google Scholar

    [22]

    Chen X, Bhola B, Huang Y, Ho S T 2010 Opt. Express 18 17220

    [23]

    Babicheva V E, Kulkova I V, Malureanu R, Yvind K, Lavrinenko A V 2010 Phys. Opt. 10 389

    [24]

    Yu Z, Veronis G, Fan S 2008 Appl. Phys. Lett. 92 041117Google Scholar

  • 图 1  MIM波导滤波器结构示意图

    Fig. 1.  Structure schematics of the MIM waveguide filter.

    图 2  三种波导结构的透射光谱

    Fig. 2.  The transmission spectrum with three kinds of structures.

    图 3  Structure 3电场强度E分布 (a)共振波长左侧谷; (b)共振波长处; (c)共振波长右侧谷

    Fig. 3.  Electric filed intensity (E) distribution of Structure 3: (a) At the left dip of the resonance wavelength; (b) at the resonance wavelength; (c) at the right dip of the resonance wavelength.

    图 4  结构参数对滤波特性的影响 (a)不同L3r时滤波器的透射谱; (b)不同g时的透射谱; (c)透射峰共振波长与L3r的关系; (d)不同共振波长处L3r的关系

    Fig. 4.  Influence of parameters on filter characteristics: (a) Transmission spectra of the filter for different parameters of L3 and r; (b) for different parameters of g; (c) relationship between resonance wavelength and L3 and r; (d) relation curves of L3 and r for different resonance peaks.

    图 5  结构内填充不同折射率的介质 (a) 透射光谱; (b) 共振波长与介质折射率的关系

    Fig. 5.  Structures filled by different materials with different indexes: (a) Transmission spectra; (b) relationship curves between resonant wavelength and refractive index.

    图 6  圆盘腔内嵌增益介质滤波器结构 (a) 二维结构图; (b) 不同${\varepsilon _i}$时透射光谱

    Fig. 6.  Nano disk-cavity embedded gain medium filter structure: (a) Two-dimensional structure diagram; (b) transmission spectra for different${\varepsilon _i}$.

    图 7  PIT共振波长处电场强度与稳态磁场分布 (a) 电场强度场; (b) 稳态磁场

    Fig. 7.  Electric filed intensityand steady state magnetic field distribution at resonant wavelengths of PIT: (a) Electric filed intensity; (b) steady state magnetic field.

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Ozbay E 2006 Science 311 189Google Scholar

    [3]

    Jun Z, Xu W J, Xu Z J, Fu D L, Song S X, Wei D Q 2017 Optik 134 187Google Scholar

    [4]

    Chen Y, Luo P, Zhao Z Y, He L, Cui X N 2017 Phys. Lett. A 381 3472Google Scholar

    [5]

    Liu Y, Zhou F, Yao B, Cao J, Mao Q H 2013 Plasmonics 8 1035Google Scholar

    [6]

    祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 物理学报 67 197301Google Scholar

    Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X Y 2018 Acta Phys. Sin. 67 197301Google Scholar

    [7]

    Zhang X Y, Hu A, Wen J Z, Zhang T, Xue X J, Zhou Y, Duley WW 2010 Opt. Express 18 18945Google Scholar

    [8]

    张志东, 赵亚男, 卢东, 熊祖洪, 张中月 2012 物理学报 61 187301Google Scholar

    Zhang Z D, Zhao Y N, Lu D, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 187301Google Scholar

    [9]

    Tao J, Huang X G, Lin X S, Chen J H, Zhang Q, Jin X P 2010 J. Opt. Soc. Am. 27 323Google Scholar

    [10]

    Yun B F, Hu G H, Cui Y P 2013 Plasmonics 8 267Google Scholar

    [11]

    Wang T B, Wen X W, Yin C P, Wang H Z 2009 Opt. Express 17 24096Google Scholar

    [12]

    Mei X, Huang X, Tao J, Zhu J H, Zhu Y J, Jin X P 2010 J. Opt. Soc. Am. B 27 2707Google Scholar

    [13]

    Wang L, Li W, Jiang X 2015 Opt. Lett. 40 2325Google Scholar

    [14]

    Chen J, Wang C, Zhang R, Xiao J 2012 Opt. Lett. 37 5133Google Scholar

    [15]

    杨韵茹, 关建飞 2016 物理学报 65 057301Google Scholar

    Yang Y R, Guan J F 2016 Acta Phys. Sin. 65 057301Google Scholar

    [16]

    Kim K Y, Cho Y K, Tae H S, Lee J H 2006 Opt. Express 14 320Google Scholar

    [17]

    Haus H A 1984 Waves and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall) pp56–59

    [18]

    Chremmos I 2009 J. Opt. Soc. Am. 26 2623Google Scholar

    [19]

    Zhang Q, Huang X G, Lin X S, Tao J, Jin X P 2009 Opt. Express 17 7549Google Scholar

    [20]

    Vlasov Y A, O'Boyle M, Hamann H F, McNab S J 2005 Nature 438 65Google Scholar

    [21]

    Nezhad M, Tetz K, Fainman Y 2004 Opt. Express 12 4072Google Scholar

    [22]

    Chen X, Bhola B, Huang Y, Ho S T 2010 Opt. Express 18 17220

    [23]

    Babicheva V E, Kulkova I V, Malureanu R, Yvind K, Lavrinenko A V 2010 Phys. Opt. 10 389

    [24]

    Yu Z, Veronis G, Fan S 2008 Appl. Phys. Lett. 92 041117Google Scholar

  • [1] 胡树南, 李德琼, 詹杰, 高恩多, 王琦, 刘南柳, 聂国政. 基于协同效应的等离子体诱导透明及光开关与慢光应用. 物理学报, 2025, 74(9): . doi: 10.7498/aps.74.20250078
    [2] 王哲飞, 吴杰, 万发雨, 曾庆生, 侯建强, 傅佳辉, 吴群, 宋明歆, TayebA. Denidni. 基于类电磁诱导透明效应的极化转换滤波器. 物理学报, 2024, 73(18): 188101. doi: 10.7498/aps.73.20240632
    [3] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析. 物理学报, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [4] 祁云平, 贾迎君, 张婷, 丁京徽, 尉净雯, 王向贤. 基于Fano共振的金属-绝缘体-金属-石墨烯纳米管混合结构动态可调折射率传感器. 物理学报, 2022, 71(17): 178101. doi: 10.7498/aps.71.20220652
    [5] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [6] 朱子豪, 高有康, 曾严, 程政, 马洪华, 易煦农. 基于四盘形谐振腔耦合波导的三波段等离子体诱导透明效应. 物理学报, 2022, 71(24): 244201. doi: 10.7498/aps.71.20221397
    [7] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211397
    [8] 赵泽宇, 刘晋侨, 李爱武, 徐颖. 金纳米柱阵列表面等离子体激元与J-聚集分子强耦合作用. 物理学报, 2016, 65(23): 231101. doi: 10.7498/aps.65.231101
    [9] 杨韵茹, 关建飞. 基于金属-电介质-金属波导结构的等离子体滤波器的数值研究. 物理学报, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [10] 王平, 胡德骄, 肖钰斐, 庞霖. 金属光栅对表面等离子体波的辐射抑制研究. 物理学报, 2015, 64(8): 087301. doi: 10.7498/aps.64.087301
    [11] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [12] 尹彬, 柏云龙, 齐艳辉, 冯素春, 简水生. 拉锥型啁啾光纤光栅滤波器的研究. 物理学报, 2013, 62(21): 214213. doi: 10.7498/aps.62.214213
    [13] 陈泳屹, 秦莉, 佟存柱, 王立军. 金属-介质光栅结构表面等离子体耦合效率的模拟研究. 物理学报, 2013, 62(16): 167301. doi: 10.7498/aps.62.167301
    [14] 王五松, 张利伟, 冉佳, 张冶文. 微波频段表面等离子激元波导滤波器的实验研究. 物理学报, 2013, 62(18): 184203. doi: 10.7498/aps.62.184203
    [15] 邱巍, 吕品, 马英驰, 徐晓娟, 刘典, 张程华. 均匀展宽增益介质中超光速饱和现象的研究. 物理学报, 2012, 61(10): 104209. doi: 10.7498/aps.61.104209
    [16] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月. 基于圆弧谐振腔的金属-介质-金属波导滤波器的数值研究. 物理学报, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [17] 李巍, 王永钢, 杨伯君. 损耗对表面等离子体激元压缩态的影响. 物理学报, 2011, 60(2): 024203. doi: 10.7498/aps.60.024203
    [18] 沈云, 范定寰, 傅继武, 于国萍. 加入增益介质的表面等离子体激元耦合共振波导传输特性理论研究. 物理学报, 2011, 60(11): 117302. doi: 10.7498/aps.60.117302
    [19] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦. 物理学报, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [20] 刘炳灿, 逯志欣, 于丽. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系. 物理学报, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
计量
  • 文章访问数:  9338
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-13
  • 修回日期:  2019-09-16
  • 上网日期:  2019-11-26
  • 刊出日期:  2019-12-05

/

返回文章
返回