-
基于表面等离子体激元的传输及耦合特性, 提出了一种半封闭T形波导侧耦合圆盘腔的金属-介质-金属波导滤波器结构. 应用有限元法研究了其传输特性. 结果表明, 在透射光谱中出现了基于等离子诱导透明(PIT)效应的窄带透射峰. 通过理论分析与模场分布有效阐释了PIT透明峰与两侧谷值的物理产生机理, 同时数值研究表明通过改变支节长度与圆盘谐振腔半径可调节滤波器共振波长, 通过外调制来改变结构介质折射率可实现滤波波长的近似线性调节. 进一步, 在圆盘腔中内嵌增益介质, 增强了其对光的局域能力, 加强了模式共振作用, 实现了压缩滤波通带带宽的同时有效地提高了结构透射率, 相比同类滤波器获得了更好的滤波性能. 研究结果为高分辨率窄带滤波器的设计提供了有效的理论参考.Filter is the core communication device in optical integrated chip. In recent years, plasma-induced transparency in surface plasmon (SPP) subwavelength waveguide photonic deviceshas become a research hotspot in the field of nano optics. The plasmon-induced transparency (PIT) is a phenomenon that the original absorption region produces a sharp transparent window due to the interaction among different resonant modes of SPPs, therefore, a higher resolution and quality factor surface plasmons can be obtained by using this feature to design a metal-medium-metal (MIM) waveguide structure filter. However, due to the Ohmic loss caused by metal parts, further research is needed on how to effectively improve transmission efficiency and achieve better frequency selection and filtering effect while reducing filter bandwidth in MIM waveguide filter. Based on the transmission and coupling characteristics of SPPs, an MIM waveguide filter with semi-closed T-waveguide side coupled disc cavity is proposed.Its transmission characteristics are studied by using the finite element method. The results show that a narrow-band transmission peak based on plasma-induced transparency appears in the transmission spectrum. Through theoretical analysis and mode field distribution, the physical mechanism of generating the PIT transparent peak and valley values on both sides is effectively explained. Compared with the traditional straight waveguide structure, the curved waveguide structure can generate the bilateral coupling effect, which can make resonant interaction stronger. Meanwhile, the numerical study shows that the approximately linear adjustment of filter wavelength can be achieved by changing the length of branches, the radius of the disk cavity and the refractive index of the medium in the cavity through external modulation. Further, the gain medium is embedded in the disk cavity, which enhances its local ability to emit light, strengthens the mode resonance effect, and realizes the compression filter pass-band bandwidth while effectively improving the structural transmittance, compared with similar filters. The research results provide an effective theoretical reference for designing the high resolution narrowband filter.
-
Keywords:
- surface plasmon polaritons /
- plasmonic-induced transparency /
- gain medium /
- filter
[1] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar
[2] Ozbay E 2006 Science 311 189Google Scholar
[3] Jun Z, Xu W J, Xu Z J, Fu D L, Song S X, Wei D Q 2017 Optik 134 187Google Scholar
[4] Chen Y, Luo P, Zhao Z Y, He L, Cui X N 2017 Phys. Lett. A 381 3472Google Scholar
[5] Liu Y, Zhou F, Yao B, Cao J, Mao Q H 2013 Plasmonics 8 1035Google Scholar
[6] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 物理学报 67 197301Google Scholar
Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X Y 2018 Acta Phys. Sin. 67 197301Google Scholar
[7] Zhang X Y, Hu A, Wen J Z, Zhang T, Xue X J, Zhou Y, Duley WW 2010 Opt. Express 18 18945Google Scholar
[8] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月 2012 物理学报 61 187301Google Scholar
Zhang Z D, Zhao Y N, Lu D, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 187301Google Scholar
[9] Tao J, Huang X G, Lin X S, Chen J H, Zhang Q, Jin X P 2010 J. Opt. Soc. Am. 27 323Google Scholar
[10] Yun B F, Hu G H, Cui Y P 2013 Plasmonics 8 267Google Scholar
[11] Wang T B, Wen X W, Yin C P, Wang H Z 2009 Opt. Express 17 24096Google Scholar
[12] Mei X, Huang X, Tao J, Zhu J H, Zhu Y J, Jin X P 2010 J. Opt. Soc. Am. B 27 2707Google Scholar
[13] Wang L, Li W, Jiang X 2015 Opt. Lett. 40 2325Google Scholar
[14] Chen J, Wang C, Zhang R, Xiao J 2012 Opt. Lett. 37 5133Google Scholar
[15] 杨韵茹, 关建飞 2016 物理学报 65 057301Google Scholar
Yang Y R, Guan J F 2016 Acta Phys. Sin. 65 057301Google Scholar
[16] Kim K Y, Cho Y K, Tae H S, Lee J H 2006 Opt. Express 14 320Google Scholar
[17] Haus H A 1984 Waves and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall) pp56–59
[18] Chremmos I 2009 J. Opt. Soc. Am. 26 2623Google Scholar
[19] Zhang Q, Huang X G, Lin X S, Tao J, Jin X P 2009 Opt. Express 17 7549Google Scholar
[20] Vlasov Y A, O'Boyle M, Hamann H F, McNab S J 2005 Nature 438 65Google Scholar
[21] Nezhad M, Tetz K, Fainman Y 2004 Opt. Express 12 4072Google Scholar
[22] Chen X, Bhola B, Huang Y, Ho S T 2010 Opt. Express 18 17220
[23] Babicheva V E, Kulkova I V, Malureanu R, Yvind K, Lavrinenko A V 2010 Phys. Opt. 10 389
[24] Yu Z, Veronis G, Fan S 2008 Appl. Phys. Lett. 92 041117Google Scholar
-
图 4 结构参数对滤波特性的影响 (a)不同L3和r时滤波器的透射谱; (b)不同g时的透射谱; (c)透射峰共振波长与L3和r的关系; (d)不同共振波长处L3和r的关系
Fig. 4. Influence of parameters on filter characteristics: (a) Transmission spectra of the filter for different parameters of L3 and r; (b) for different parameters of g; (c) relationship between resonance wavelength and L3 and r; (d) relation curves of L3 and r for different resonance peaks.
-
[1] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar
[2] Ozbay E 2006 Science 311 189Google Scholar
[3] Jun Z, Xu W J, Xu Z J, Fu D L, Song S X, Wei D Q 2017 Optik 134 187Google Scholar
[4] Chen Y, Luo P, Zhao Z Y, He L, Cui X N 2017 Phys. Lett. A 381 3472Google Scholar
[5] Liu Y, Zhou F, Yao B, Cao J, Mao Q H 2013 Plasmonics 8 1035Google Scholar
[6] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤 2018 物理学报 67 197301Google Scholar
Qi Y P, Zhang X W, Zhou P Y, Hu B B, Wang X Y 2018 Acta Phys. Sin. 67 197301Google Scholar
[7] Zhang X Y, Hu A, Wen J Z, Zhang T, Xue X J, Zhou Y, Duley WW 2010 Opt. Express 18 18945Google Scholar
[8] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月 2012 物理学报 61 187301Google Scholar
Zhang Z D, Zhao Y N, Lu D, Xiong Z H, Zhang Z Y 2012 Acta Phys. Sin. 61 187301Google Scholar
[9] Tao J, Huang X G, Lin X S, Chen J H, Zhang Q, Jin X P 2010 J. Opt. Soc. Am. 27 323Google Scholar
[10] Yun B F, Hu G H, Cui Y P 2013 Plasmonics 8 267Google Scholar
[11] Wang T B, Wen X W, Yin C P, Wang H Z 2009 Opt. Express 17 24096Google Scholar
[12] Mei X, Huang X, Tao J, Zhu J H, Zhu Y J, Jin X P 2010 J. Opt. Soc. Am. B 27 2707Google Scholar
[13] Wang L, Li W, Jiang X 2015 Opt. Lett. 40 2325Google Scholar
[14] Chen J, Wang C, Zhang R, Xiao J 2012 Opt. Lett. 37 5133Google Scholar
[15] 杨韵茹, 关建飞 2016 物理学报 65 057301Google Scholar
Yang Y R, Guan J F 2016 Acta Phys. Sin. 65 057301Google Scholar
[16] Kim K Y, Cho Y K, Tae H S, Lee J H 2006 Opt. Express 14 320Google Scholar
[17] Haus H A 1984 Waves and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall) pp56–59
[18] Chremmos I 2009 J. Opt. Soc. Am. 26 2623Google Scholar
[19] Zhang Q, Huang X G, Lin X S, Tao J, Jin X P 2009 Opt. Express 17 7549Google Scholar
[20] Vlasov Y A, O'Boyle M, Hamann H F, McNab S J 2005 Nature 438 65Google Scholar
[21] Nezhad M, Tetz K, Fainman Y 2004 Opt. Express 12 4072Google Scholar
[22] Chen X, Bhola B, Huang Y, Ho S T 2010 Opt. Express 18 17220
[23] Babicheva V E, Kulkova I V, Malureanu R, Yvind K, Lavrinenko A V 2010 Phys. Opt. 10 389
[24] Yu Z, Veronis G, Fan S 2008 Appl. Phys. Lett. 92 041117Google Scholar
计量
- 文章访问数: 8751
- PDF下载量: 86
- 被引次数: 0