搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属光栅对表面等离子体波的辐射抑制研究

王平 胡德骄 肖钰斐 庞霖

引用本文:
Citation:

金属光栅对表面等离子体波的辐射抑制研究

王平, 胡德骄, 肖钰斐, 庞霖
cstr: 32037.14.aps.64.087301

Suppression of metal grating to surface plasma radiation

Wang Ping, Hu De-Jiao, Xiao Yu-Fei, Pang Lin
cstr: 32037.14.aps.64.087301
PDF
导出引用
  • 对金属光栅进行严格耦合波理论计算, 得到了780和1500 nm波长入射光条件下不同光栅调制深度(20-80 nm)对应的反射谱. 根据Fano理论推导了描述反射谱线的经验公式, 最后应用有限元法计算光栅表面近场电场分布, 验证了公式的正确性. 反射谱线公式反映出光栅耦合表面等离子体的各个物理效应, 其中最重要的是反映出光栅在某一调制深度下对表面等离子体反耦合的抑制作用, 这一发现为设计光栅能量约束器件提供了物理依据.
    Surface plasmon polaritons (SPP) are widely investigated in many fields because of the surface confinement of their electrocmagnetic field. Grating coupling is one of the methods to achieve the momentum match between light in free space and the surface plasmon to excite SPP. Because of the nature of the grating coupling, its parameters will greatly affect the coupling efficiency. Varying the grating modulation depth but keeping other parameters unchanged, we investigate the reflection spectra of onedimensional rectangle metallic grating by rigorous coupled-wave theory under the irradiation of incident light of 780 and 1500 nm in wavelength, respectively. According to Fano theory, the reflectance of metallic grating is the result of interference of two components, i.e., a directly reflected mode from the metal surface and a resonance radiation mode coupled out by the SPP propagating along the grating surface. We derive the Fano-type expression to describe the reflection spectra, and explain the contributions of directly reflected mode, SPP resonance radiation mode and the interference between these two effects. Near-filed electromagnetic distribution on metallic grating surface proves that the Fano-type expression is accurate enough to reflect the nature of the interference between the direct and radiation modes. Most importantly, our results from the expressions suggest that in some special grating condition, the metallic grating almost completely suppresses the SPP radiation propagating from grating to free space, which means that the energy of light can be completely trapped inside the grating. The phenomenon can be employed in designing light trapping device.
    • 基金项目: 国家自然科学基金(批准号: 61377054)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61377054).
    [1]

    Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto E, Brolo A, Gordon R, Sinton D 2009 Anal. Chem. 81 4308

    [2]

    Atsushi O, Kato J, Kawata S 2005 Phys. Rev. Lett. 95 267407

    [3]

    Fu Y, Li K, Kong F 2008 PIER 82 109

    [4]

    Khajavikhan M, Simic A, Katz M, Lee J H, Slutsky B, Mizrahi A, Lomakin V, Fainman Y 2012 Nature 482 204

    [5]

    Huang H, Zhao Q, Jiao J, Liang G F, Huang X P 2013 Acta Phys. Sin. 62 135201 (in Chinese) [黄洪, 赵青, 焦蛟, 梁高峰, 黄小平 2013 物理学报 62 135201]

    [6]

    Jing Q L, Du C G, Gao J C 2013 Acta Phys. Sin. 62 037302 (in Chinese) [荆庆丽, 杜春光, 高健存 2013 物理学报 62 037302]

    [7]

    Hu C K 2010 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [胡昌奎 2010 博士学位论文(武汉: 华中科技大学)]

    [8]

    Wang L, Cao J X, L Y, Liu L, Du Y C, Wang J 2012 Chin. Phys. B 21 017301

    [9]

    Chen Y Y, Qin L, Tong C Z, Wang L J 2013 Acta Phys. Sin. 62 167301 (in Chinese) [陈泳屹, 秦莉, 佟存柱, 王立军 2013 物理学报 62 167301]

    [10]

    Anttu N, Guan Z Q, Hakanson U, Xu H X, Xu H Q 2012 Appl. Phys. Lett. 100 091111

    [11]

    Hori H, Tawa K, Kintaka K, Nishii J, Tatsu Y 2009 Opt. Rev. 16 216

    [12]

    Xiao Y F, Zhang W P, Huang H H, Pang L 2013 Chin. J. Lasers 40 1114001 (in Chinese) [肖钰斐, 张卫平, 黄海华, 庞霖 2013 中国激光 40 1114001]

    [13]

    Zhang Z Y, Wang L N, Hu H F, Li K W, Ma X P, Song G F 2013 Chin. Phys. B 22 104213

    [14]

    Li J Y, Qiu K S, Ma H Q 2014 Chin. Phys. B 23 106804

    [15]

    Li J Y, Gan L, Li Z Y 2013 Chin. Phys. B 22 117302

    [16]

    Liu H, Lalanne P 2008 Nature 452 728

    [17]

    Liu H, Lalanne P 2013 Opt. Express 21 16753

    [18]

    Fano U 1961 Phys. Rev. 124 1866

    [19]

    Genet C, Exter M P, Woerdman J P 2003 Opt. Commun. 225 331

    [20]

    Pang L, Chen H M, Wang L, Beechem J M, Fainman Y 2009 Opt. Express 17 14700

  • [1]

    Eftekhari F, Escobedo C, Ferreira J, Duan X, Girotto E, Brolo A, Gordon R, Sinton D 2009 Anal. Chem. 81 4308

    [2]

    Atsushi O, Kato J, Kawata S 2005 Phys. Rev. Lett. 95 267407

    [3]

    Fu Y, Li K, Kong F 2008 PIER 82 109

    [4]

    Khajavikhan M, Simic A, Katz M, Lee J H, Slutsky B, Mizrahi A, Lomakin V, Fainman Y 2012 Nature 482 204

    [5]

    Huang H, Zhao Q, Jiao J, Liang G F, Huang X P 2013 Acta Phys. Sin. 62 135201 (in Chinese) [黄洪, 赵青, 焦蛟, 梁高峰, 黄小平 2013 物理学报 62 135201]

    [6]

    Jing Q L, Du C G, Gao J C 2013 Acta Phys. Sin. 62 037302 (in Chinese) [荆庆丽, 杜春光, 高健存 2013 物理学报 62 037302]

    [7]

    Hu C K 2010 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [胡昌奎 2010 博士学位论文(武汉: 华中科技大学)]

    [8]

    Wang L, Cao J X, L Y, Liu L, Du Y C, Wang J 2012 Chin. Phys. B 21 017301

    [9]

    Chen Y Y, Qin L, Tong C Z, Wang L J 2013 Acta Phys. Sin. 62 167301 (in Chinese) [陈泳屹, 秦莉, 佟存柱, 王立军 2013 物理学报 62 167301]

    [10]

    Anttu N, Guan Z Q, Hakanson U, Xu H X, Xu H Q 2012 Appl. Phys. Lett. 100 091111

    [11]

    Hori H, Tawa K, Kintaka K, Nishii J, Tatsu Y 2009 Opt. Rev. 16 216

    [12]

    Xiao Y F, Zhang W P, Huang H H, Pang L 2013 Chin. J. Lasers 40 1114001 (in Chinese) [肖钰斐, 张卫平, 黄海华, 庞霖 2013 中国激光 40 1114001]

    [13]

    Zhang Z Y, Wang L N, Hu H F, Li K W, Ma X P, Song G F 2013 Chin. Phys. B 22 104213

    [14]

    Li J Y, Qiu K S, Ma H Q 2014 Chin. Phys. B 23 106804

    [15]

    Li J Y, Gan L, Li Z Y 2013 Chin. Phys. B 22 117302

    [16]

    Liu H, Lalanne P 2008 Nature 452 728

    [17]

    Liu H, Lalanne P 2013 Opt. Express 21 16753

    [18]

    Fano U 1961 Phys. Rev. 124 1866

    [19]

    Genet C, Exter M P, Woerdman J P 2003 Opt. Commun. 225 331

    [20]

    Pang L, Chen H M, Wang L, Beechem J M, Fainman Y 2009 Opt. Express 17 14700

  • [1] 磁约束等离子体中的高能量粒子专题编者按. 物理学报, 2023, 72(21): 210101. doi: 10.7498/aps.72.210101
    [2] 祁云平, 贾迎君, 张婷, 丁京徽, 尉净雯, 王向贤. 基于Fano共振的金属-绝缘体-金属-石墨烯纳米管混合结构动态可调折射率传感器. 物理学报, 2022, 71(17): 178101. doi: 10.7498/aps.71.20220652
    [3] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器. 物理学报, 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [4] 李志明, 王玺, 聂劲松. 飞秒激光烧蚀硅材料表面形成周期波纹形貌研究. 物理学报, 2017, 66(10): 105201. doi: 10.7498/aps.66.105201
    [5] 陆云清, 成心怡, 许敏, 许吉, 王瑾. 基于TPPs-SPPs混合模式的激发以增强单纳米缝异常透射. 物理学报, 2016, 65(20): 204207. doi: 10.7498/aps.65.204207
    [6] 赵泽宇, 刘晋侨, 李爱武, 徐颖. 金纳米柱阵列表面等离子体激元与J-聚集分子强耦合作用. 物理学报, 2016, 65(23): 231101. doi: 10.7498/aps.65.231101
    [7] 刘永强, 孔令宝, 杜朝海, 刘濮鲲. 基于类表面等离子体激元的矩形金属光栅色散特性的研究. 物理学报, 2015, 64(17): 174102. doi: 10.7498/aps.64.174102
    [8] 陈泳屹, 秦莉, 佟存柱, 王立军. 金属-介质光栅结构表面等离子体耦合效率的模拟研究. 物理学报, 2013, 62(16): 167301. doi: 10.7498/aps.62.167301
    [9] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究. 物理学报, 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [10] 钭斐玲, 胡延庆, 黎勇, 樊瑛, 狄增如. 空间网络上的随机游走. 物理学报, 2012, 61(17): 178901. doi: 10.7498/aps.61.178901
    [11] 黎勇, 钭斐玲, 樊瑛, 狄增如. 二维有限能量约束下最优导航问题的理论分析. 物理学报, 2012, 61(22): 228902. doi: 10.7498/aps.61.228902
    [12] 李巍, 王永钢, 杨伯君. 损耗对表面等离子体激元压缩态的影响. 物理学报, 2011, 60(2): 024203. doi: 10.7498/aps.60.024203
    [13] 沈云, 范定寰, 傅继武, 于国萍. 加入增益介质的表面等离子体激元耦合共振波导传输特性理论研究. 物理学报, 2011, 60(11): 117302. doi: 10.7498/aps.60.117302
    [14] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [15] 刘炳灿, 逯志欣, 于丽. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系. 物理学报, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [16] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦. 物理学报, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [17] 黄茜, 曹丽冉, 耿卫东, 孙建, 王烁, 熊绍珍, 张晓丹, 赵颖. 功能光学纳米Ag薄膜的制备及其光学特性研究. 物理学报, 2009, 58(4): 2731-2736. doi: 10.7498/aps.58.2731
    [18] 孙 恺, 辛 煜, 黄晓江, 袁强华, 宁兆元. 60MHz电容耦合等离子体中电子能量分布函数特性研究. 物理学报, 2008, 57(10): 6465-6470. doi: 10.7498/aps.57.6465
    [19] 吴颖. 等离子体简并与近简并四波混频理论——透射光栅位形. 物理学报, 1991, 40(2): 243-252. doi: 10.7498/aps.40.243
    [20] 陆卫;叶红娟;陶凤翔;沈学础;方志烈;劳浦东. 液相外延GaAs_(1-x)_P_x_混晶的光学声子,等离子体激元和LO声子-等离子激元耦合模. 物理学报, 1987, 36(8): 965-973. doi: 10.7498/aps.36.965
计量
  • 文章访问数:  8001
  • PDF下载量:  427
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-27
  • 修回日期:  2014-12-04
  • 刊出日期:  2015-04-05

/

返回文章
返回