搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于协同效应的双偏振三重等离子诱导透明

张文杰 张小姣 胡树南 詹杰 高恩多 王琦 聂国政

引用本文:
Citation:

基于协同效应的双偏振三重等离子诱导透明

张文杰, 张小姣, 胡树南, 詹杰, 高恩多, 王琦, 聂国政

Dynamically tunable multi-frequency modulator via triple plasmon-induced transparency in graphene metasurfaces

ZHANG Wenjie, ZHANG Xiaojiao, HU Shunan, ZHAN Jie, GAO Enduo, WANG Qi, NIE Guozheng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 传统等离子体诱导透明(plasmon induced transparency, PIT)受限于多种明暗模式间的耦合机制. 为了突破该机制的局限性, 本研究提出了一种双偏振石墨烯超表面结构, 该结构由4组对称L型石墨烯环绕十字形中空石墨烯组成, 通过两个单PIT之间的协同效应形成了三重PIT. 研究发现, 通过费米能级和载流子迁移率的调制, 该结构作为慢光器件展现出高达500的群折射率, 具备优异的慢光调控能力. 作为偏振器件, 该结构具有双偏振特性, 在xy偏振光入射下均能产生三重PIT窗口. 特别的是, 共振频率f6不受入射光偏振方向的影响. 这种在不同偏振光下均具有良好的稳定性和抗干扰能力对偏振器件的设计尤为重要. 因此, 本研究设计了一种慢光调控和偏振选择于一体的多功能集成器件, 为基于偏振不敏感的协同效应提供了新的理论指导和研究方向.
    Plasmon-induced transparency (PIT) is a class of electromagnetically induced transparency phenomenon that enhances the interaction between light and matter, thereby improving the performance of nano-optical devices. However, traditional PITs usually rely on near-field coupling between bright modes and dark modes. In order to break through the limitation of this mechanism, in this study we propose a dual-polarized graphene hypersurface structure, which consists of four groups of symmetric L-shaped graphene surrounding cross-shaped hollow graphene, forming a triple PIT through the synergistic effect between two single PITs. The accuracy of the results is verified by simulating the transmission spectra using the finite-difference time-domain (FDTD), which is highly similar to that of the coupled-mode theory (CMT) results. It is found that by modulating the Fermi energy levels and carrier mobility, this structure exhibits a group refractive index of up to 500 as a slow-light device, demonstrating excellent slow-light control capability. As a polarizing device, this structure has dual polarization characteristics and can generate a triple PIT window under both x and y polarized light incidence. In particular, the resonant frequency f6 is not affected by the direction of polarization of the incident light. This good stability and resistance to interference in various polarized light conditions are particularly important for designing polarization devices. Meanwhile, we adjust the length parameter of graphene L2 and find that the resonance frequency f6 is still highly stable, showing a better tolerance to structural changes. Therefore, in this study, a multifunctional integrated device with slow light modulation and polarization selection in one device is designed, providing new theoretical guidance and research directions for synergistic effects based on polarization insensitivity.
  • 图 1  (a) 所提出的超表面的三维结构透视图和侧视图; (b) 一个周期单元结构顶视图; (c) 石墨烯结构制备过程的示意图

    Fig. 1.  (a) Perspective and side views of the three-dimensional structure of the proposed hypersurface; (b) top view of one cycle unit structure; (c) schematic diagram of the process of preparing graphene structures.

    图 2  耦合模理论示意图

    Fig. 2.  Schematic diagram of coupled mode theory.

    图 3  (a)—(c) 不同石墨烯结构之间相互作用的透射光谱; (d) 三重PIT共振频率下的归一化电场分布图

    Fig. 3.  (a)–(c) Transmission spectra illustrating interactions between different graphene structures; (d) normalized electric field distribution at triple PIT resonance frequencies.

    图 4  (a) 不同费米能级下FDTD模拟和CMT计算的透射光谱; (b) 三重PIT在不同费米能级的三维演化

    Fig. 4.  (a) Transmission spectra from FDTD simulations and CMT calculations at Fermi levels; (b) three-dimensional evolution of the triple-PIT at different Fermi levels.

    图 5  不同结构参数下的透射光谱

    Fig. 5.  Transmission spectra with different structural parameters.

    图 6  不同石墨烯载流子迁移率条件下, 群折射率和相移随频率的变化(EF = 1.0 eV) (a) 0.5 m2/(V·s); (b) 1.0 m2/(V·s); (c) 2.0 m2/(V·s); (d) 3.0 m2/(V·s)

    Fig. 6.  Variation of group index and phase shift with frequency at graphene carrier mobilities of (a) 0.5 m2/(V·s), (b) 1.0 m2/(V·s), (c) 2.0 m2/(V·s), and (d) 3.0 m2/(V·s) (EF = 1.0 eV).

    图 7  (a) 偏振光入射角从0°—90°变化的透射光谱; (b) 偏振光入射角的透射率随频率变化的三维演化; (c) 共振频率随角度变化的趋势图

    Fig. 7.  (a) Transmission spectra under varying polarization angles of incident light from 0° to 90°; (b) three-dimensional mapping of transmittance versus frequency and polarization angle; (c) trend plot of resonance frequency versus angle.

    图 8  (a)—(c) 分别为SS, SZ和整个结构对于偏振光的透射光谱; (d) 不同偏振光下整体结构的电场分布图

    Fig. 8.  (a)–(c) Transmission spectra of the SS, SZ, and the entire structure under polarized illumination, respectively; (d) plot of the electric field distribution of the overall structure under different polarized light.

    表 1  不同图案化石墨烯的性能比较

    Table 1.  Comparison of the properties of different patterned grapheme.

    Reference
    /year
    Modulation modeMaterial structureGroup indexPolarization direction or sensitive
    2020[47]Dual-frequencySingle-layer continuous patterned graphene358x-polarization
    2021[34]Multiple-frequencySingle-layer discrete patterned graphene321Polarization-insensitive
    2022[48]Multiple-frequencyDouble-layer patterned graphene<500x-polarization
    2023[49]Dual-frequencyMonolayer patterned black phosphorus219x-polarization
    2023[50]Multiple-frequencyDouble-layer patterned graphene424Polarization-insensitive
    2024[51]Multiple-frequencySingle-layer silicon nanostrip array320x or y-polarization
    This workMultiple-frequencySingle-layer discrete patterned graphene500x or y-polarization-insensitive
    下载: 导出CSV
  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [2]

    Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44

    [3]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [4]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685Google Scholar

    [5]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83Google Scholar

    [6]

    Farmani A, Mir A, Sharifpour Z 2018 Appl. Surf. Sci. 453 358Google Scholar

    [7]

    Creighton J A, Blatchford C G, Albrecht M G 1979 J. Chem. Soc. , Faraday Trans. 75 790Google Scholar

    [8]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [9]

    Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435Google Scholar

    [10]

    Chen P Y, Argyropoulos C, Farhat M, Gomez-Diaz J S 2017 Nanophotonics 6 1239Google Scholar

    [11]

    Chen Z Y, Liu N L, Nie G Z, Li Y Q, Su X, Tang X F, Zeng Y, Liu Y X 2024 Physica B. 686 416073Google Scholar

    [12]

    Liu C B, Bai Y, Zhou J, Zhao Q, Qiao L L 2017 J. Korean Ceram. Soc. 54 349Google Scholar

    [13]

    Han M Y, Özyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805Google Scholar

    [14]

    Zhang B H, Huang X T, Chen G, Wang Z, Qian W, Zhang Z X, Cai W Q, Du K, Zhou C, Wang T T, Zhu W, He D P, Wang S X 2023 Opt. Laser Technol. 164 109431Google Scholar

    [15]

    Dhriti K M, Chowdhary A K, Chouhan B S, Sikdar D, Kumar G 2022 J. Phys. D: Appl. Phys. 55 285101Google Scholar

    [16]

    Li Z L, Nie G Z, Chen Z Q, Zhan S P, Lan L F 2024 Opt. Lett. 49 3380Google Scholar

    [17]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨 2023 物理学报 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys. Sin. 72 128701Google Scholar

    [18]

    Li Z L, Nie G Z, Wang J H, Zhong F, Zhan S P 2024 Phys. Rev. Appl. 21 034039Google Scholar

    [19]

    Zhan Y, Fan C Z 2023 Mater. Res. Express 10 055802Google Scholar

    [20]

    Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131Google Scholar

    [21]

    Zhang H Y, Cao Y Y, Liu Y Z, Li Y, Zhang Y P 2017 Opt. Commun. 391 9Google Scholar

    [22]

    Scott Z, Muhammad S, Shahbazyan T V 2022 J. Chem. Phys. 156 194702Google Scholar

    [23]

    Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel A P, Ustinov A V, Anlage S M, Soukoulis C M 2011 Phys. Rev. Lett. 107 043901Google Scholar

    [24]

    成昱轩, 许辉, 于鸿飞, 黄林琴, 谷志超, 陈玉峰, 贺龙辉, 陈智全, 侯海良 2025 物理学报 74 067801Google Scholar

    Cheng Y X, Xu H, Yu H F, Huang L Q, Gu Z C, Chen Y F, He L H, Chen Z Q, Hou H L 2025 Acta Phys. Sin. 74 067801Google Scholar

    [25]

    Yang H, Li G H, Cao G T, Zhao Z Y, Chen J, Ou K, Chen X S, Lu W 2018 Opt. Express 26 5632Google Scholar

    [26]

    Tsakmakidis K L, Shen L, Schulz S A, Zheng X, Upham J, Deng X, Altug H, Vakakis A F, Boyd R 2017 Science 356 1260Google Scholar

    [27]

    He Z H, Li L Q, Cui W, Wang Y X, Xue W W, Xu H, Yi Z, Li C J, Li Z X 2021 New J. Phys. 23 053015Google Scholar

    [28]

    Yan Y, Jiang Y F, Li B X, Deng C S 2023 J. Lightwave Technol. 42 732

    [29]

    胡树南, 李德琼, 詹杰, 高恩多, 王琦, 刘南柳, 聂国政 2025 物理学报 74 097801Google Scholar

    Hu S N, Li D Q, Zhan J, Gao E D, Wang Q, Liu N L, Nie G Z 2025 Acta Phys. Sin. 74 097801Google Scholar

    [30]

    Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798Google Scholar

    [31]

    Xu H, Zhao M Z, Xiong C X, Zhang B H, Zheng M F, Zeng J P, Xia H, Li H J 2018 Phys. Chem. Chem. Phys. 20 25959Google Scholar

    [32]

    Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 75 015501

    [33]

    Liu Z M, Zhang X, Zhang Z B, Gao E D, Zhou F Q, Li H J, Luo X 2020 New J. Phys. 22 083006Google Scholar

    [34]

    Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhou S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387Google Scholar

    [35]

    Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D: Appl. Phys. 56 405102Google Scholar

    [36]

    Liu Z M, Yang G X, Luo X, Zhou F Q, Cheng Z Q, Yi Z 2024 Diam. Relat. Mater. 142 110786Google Scholar

    [37]

    Zheng L, Cheng X H, Cao D, Wang G, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H, Shen D S 2014 ACS Appl. Mater. Interfaces 6 7014Google Scholar

    [38]

    Zheng L, Cheng X H, Cao D, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H 2014 Mater. Lett. 137 200Google Scholar

    [39]

    Jin R, Huang L J, Zhou C B, Guo J Y, Fu Z C, Chen J, Wang J, Li X, Yu F L, Chen J, Zhao Z Y, Chen X S, Lu W, Li G H 2023 Nano Lett. 23 9105Google Scholar

    [40]

    Müller M, Bouša M, Hájková Z, Ledinský M, Fejar A, Drogowska-Horná K, Kalbáč M, Frank O 2020 Nanomaterials 10 589Google Scholar

    [41]

    Wu D, Wang M, Feng H, Xu Z X, Liu Y P, Xia F, Zhang K, Kong W J, Dong L F, Yun M J 2019 Carbon 155 618Google Scholar

    [42]

    Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B 56 281Google Scholar

    [43]

    Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667Google Scholar

    [44]

    Liang H W, Ruan S C, Zhang M, Su H, Li I L 2015 Appl. Phys. Lett. 107 091602Google Scholar

    [45]

    Cheng H, Chen S Q, Yu P, Duan X Y, Xie B Y, Tian J G 2013 Appl. Phys. Lett. 103 203112Google Scholar

    [46]

    Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B 80 195415Google Scholar

    [47]

    Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B X, Wu K 2020 New J. Phys. 22 103030Google Scholar

    [48]

    Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 74 115501Google Scholar

    [49]

    Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401Google Scholar

    [50]

    Liu Z M, Qin Y P, Zhou F Q, Zhou S S, Ji C, Yang G X, Xie Y D, Yang R H, Luo X 2024 Mod. Phys. Lett. B 38 2350248Google Scholar

    [51]

    Wang Y J, Luo G L, Yan Z D, Wang J P, Tang C J, Liu F X, Zhu M W 2024 J. Lightwave Technol. 42 406Google Scholar

  • [1] 史寒旭, 李欣阳, 张钰如, 王友年. 超低频/射频联合驱动容性耦合等离子体中二次电子效应的模拟. 物理学报, doi: 10.7498/aps.74.20250341
    [2] 胡树南, 李德琼, 詹杰, 高恩多, 王琦, 刘南柳, 聂国政. 基于协同效应的等离子体诱导透明及光开关与慢光应用. 物理学报, doi: 10.7498/aps.74.20250078
    [3] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, doi: 10.7498/aps.72.20222264
    [4] 谢宝豪, 陈华俊, 孙轶. 多模光力系统中光力诱导透明引起的慢光效应. 物理学报, doi: 10.7498/aps.72.20230663
    [5] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析. 物理学报, doi: 10.7498/aps.71.20221365
    [6] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, doi: 10.7498/aps.71.20211397
    [7] 朱子豪, 高有康, 曾严, 程政, 马洪华, 易煦农. 基于四盘形谐振腔耦合波导的三波段等离子体诱导透明效应. 物理学报, doi: 10.7498/aps.71.20221397
    [8] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, doi: 10.7498/aps.70.20211397
    [9] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器. 物理学报, doi: 10.7498/aps.68.20191068
    [10] 张凯, 杜春光, 高健存. 长程表面等离子体的增强效应. 物理学报, doi: 10.7498/aps.66.227302
    [11] 杨友磊, 胡业民, 项农. 捕获电子对低杂波与电子回旋波的协同效应的影响. 物理学报, doi: 10.7498/aps.66.245202
    [12] 何玉娟, 章晓文, 刘远. 总剂量辐照对热载流子效应的影响研究. 物理学报, doi: 10.7498/aps.65.246101
    [13] 郝莹莹, 孟秀兰, 姚福宝, 赵国明, 王敬, 张连珠. N2-H2容性耦合等离子体电非对称效应的particle-in-cell/Monte Carlo模拟. 物理学报, doi: 10.7498/aps.63.185205
    [14] 沈云, 傅继武, 于国萍. 增益对一维周期结构慢光传输特性影响. 物理学报, doi: 10.7498/aps.63.174202
    [15] 黄捷, 白兴宇, 曾浩, 唐昌建. 托卡马克中ECW对LHW耦合特性的影响研究. 物理学报, doi: 10.7498/aps.62.025202
    [16] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究. 物理学报, doi: 10.7498/aps.61.053101
    [17] 黄永宪, 冷劲松, 田修波, 吕世雄, 李垚. 等离子体浸没离子注入非导电聚合物的适应性及栅网诱导效应的研究. 物理学报, doi: 10.7498/aps.61.155206
    [18] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦. 物理学报, doi: 10.7498/aps.59.6921
    [19] 谢红兰, 胡 雯, 罗红心, 杜国浩, 邓 彪, 陈荣昌, 薛艳玲, 师绍猛, 肖体乔. X射线荧光全息术中消除光源偏振效应和孪生像的重构新算法. 物理学报, doi: 10.7498/aps.57.7044
    [20] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, doi: 10.7498/aps.55.1769
计量
  • 文章访问数:  263
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-15
  • 修回日期:  2025-05-28
  • 上网日期:  2025-06-11

/

返回文章
返回