-
传统等离子体诱导透明(plasmon induced transparency,PIT)受限于多种明暗模式间的耦合机制。为了突破该机制的局限性,本研究提出了一种双偏振石墨烯超表面结构,该结构由4组对称L型石墨烯环绕十字形中空石墨烯组成,通过两个单PIT之间的协同效应形成了三重PIT。研究发现,通过费米能级和载流子迁移率的调制,该结构作为慢光器件展现出高达500的群折射率,具备优异的慢光调控能力。作为偏振器件,该结构具有双偏振特性,在x和y偏振光入射下均能产生三重PIT窗口。特别的是,共振频率f6不受入射光偏振方向的影响。这种在不同偏振光下均具有良好的稳定性和抗干扰能力对偏振器件的设计尤为重要。因此,本研究设计了一种慢光调控和偏振选择于一体的多功能集成器件,为基于偏振不敏感的协同效应提供了新的理论指导和研究方向。Plasmon-induced transparency (PIT) is a class of electromagnetically induced transparency phenomena that enhances the interaction between light and matter, thereby improving the performance of nano-optical devices. However, conventional PITs usually rely on near-field coupling between bright and dark modes. In order to break through the limitation of this mechanism, this study proposes a dual-polarized graphene hypersurface structure, which consists of four groups of symmetric L-shaped graphene surrounding cross-shaped hollow graphene, forming a triple PIT through the synergistic effect between two single PITs. The accuracy of the results is verified by simulating the transmission spectra by Finite-difference time-domain(FDTD), which is highly similar to the coupled-mode theory(CMT) results. It is found that the structure exhibits a group refractive index of up to 500 as a slow-light device with excellent slow-light modulation through modulation of Fermi energy levels and carrier mobility. As a polarization device, the structure has dual polarization properties, producing a triple PIT window at the incidence of both x and y polarized light. In particular, the resonant frequency f6 is not affected by the direction of polarization of the incident light. This good stability and immunity to interference in different polarized light is particularly important for the design of polarization devices. Meanwhile, we adjusted the length parameter of graphene L2 and found that the resonance frequency f6 remained highly stable, showing a better tolerance to structural changes. Therefore, in this study, a multifunctional integrated device with slow light modulation and polarization selection in one device is designed to provide new theoretical guidance and research direction for synergistic effect based on polarization insensitivity.
-
Keywords:
- plasmon-induced transparency /
- synergisticeffect /
- slow-light /
- polarization characteristics
-
[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nat. 424 824
[2] Ebbesen T W, Genet C and Bozhevolnyi S I 2008 Phys. Today 61 44
[3] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[4] Hutter E and Fendler J H 2004 Adv. Mater. 16 1685
[5] Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83
[6] Farmani A, Mir A and Sharifpour Z 2018 Appl. Surf. Sci. 453 358
[7] Creighton J A, Blatchford C G and Albrecht M G 1979 J. Chem. Soc., Faraday Trans. 2 75 790
[8] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[9] Jablan M, Buljan H and Soljačić M 2009 Phys. Rev. B 80 245435
[10] Chen P Y, Argyropoulos C, Farhat M and Gomez-Diaz J S 2017 Nanophotonics 6 1239
[11] Chen Z, Liu N, Nie G, Li Y, Su X, Tang X, Zeng Y and Liu Y 2024 Phys. B. 686 416073
[12] Liu C, Bai Y, Zhou J, Zhao Q and Qiao L 2017 J. Korean Ceram. Soc. 54 349
[13] Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
[14] Zhang B, Huang X, Chen G, Wang Z, Qian W, Zhang Z, Cai W, Du K, Zhou C, Wang T, Zhu W, He D and Wang S 2023 Opt. Laser Technol. 164 109431
[15] Dhriti K M, Chowdhary A K, Chouhan B S, Sikdar D and Kumar G 2022 J. Phys. D: Appl. Phys. 55 285101
[16] Li Z, Nie G, Chen Z, Zhan S and Lan L 2024 Opt. Lett. 49 3380
[17] Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J and Wu P H 2023 Acta Phys. Sin. 72 128701 (in Chinese) [向星诚,马海贝,王磊,田达,张伟,张彩虹,吴敬波,范克彬,金飚兵,陈健,吴培亨 2023 物理学报 72 128701]
[18] Li Z, Nie G, Wang J, Zhong F and Zhan S 2024 Phys. Rev. Appl. 21 034039
[19] Zhan Y and Fan C 2023 Mater. Res. Express 10 055802
[20] Zayats A V, Smolyaninov I I and Maradudin A A 2005 Phys. Rep. 408 131
[21] Zhang H, Cao Y, Liu Y, Li Y and Zhang Y 2017 Opt. Commun. 391 9
[22] Scott Z, Muhammad S and Shahbazyan T V 2022 J. Chem. Phys. 156 194702
[23] Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel A P, Ustinov A V, Anlage S M and Soukoulis C M 2011 Phys. Rev. Lett. 107 043901
[24] Cheng Y X, Xu H, Yu H F, Huang L Q, Gu Z C, Chen Y F, He L H, Chen Z Q and Hou H L 2025 Acta Phys. Sin. 74 067801 (in Chinese) [成昱轩,许辉,于鸿飞,黄林琴,谷志超,陈玉峰,贺龙辉,陈智全,侯海良 2025 物理学报 74 067801]
[25] Yang H, Li G, Cao G, Zhao Z, Chen J, Ou K, Chen X and Lu W 2018 Opt. Express 26 5632
[26] Tsakmakidis K L, Shen L, Schulz S A, Zheng X, Upham J, Deng X, Altug H, Vakakis A F and Boyd R 2017 Science 356 1260
[27] He Z, Li L, Cui W, Wang Y, Xue W, Xu H, Yi Z, Li C and Li Z 2021 New J. Phys. 23 053015
[28] Yan Y, Jiang Y, Li B and Deng C 2023 J. Lightwave Technol. 42 732
[29] Hu S N, Li D Q, Zhan J, Gao E D, Wang Q, Liu N L and Nie G Z 2025 Acta Phys. Sin. 74 097801 (in Chinese) [胡树南,李德琼,詹杰,高恩多,王琦,刘南柳,聂国政 2025 物理学报 74 097801]
[30] Li M, Xu H, Yang X, Xu H, Liu P, He L, Nie G, Dong Y and Chen Z 2023 Results Phys. 52 106798
[31] Xu H, Zhao M, Xiong C, Zhang B, Zheng M, Zeng J, Xia H and Li H 2018 Phys. Chem. Chem. Phys. 20 25959
[32] Zhou X, Xu Y, Li Y, Cheng S, Yi Z, Xiao G, Wang Z and Chen Z 2022 Commun. Theor. Phys. 75 015501
[33] Liu Z, Zhang X, Zhang Z, Gao E, Zhou F, Li H and Luo X 2020 New J. Phys. 22 083006
[34] Zhang X, Zhou F, Liu Z, Zhang B, Qin Y, Zhou S, Luo X, Gao E and Li H 2021 Opt. Express 29 29387
[35] Ji C, Liu Z, Zhou F, Luo X, Yang G, Xie Y and Yang R 2023 J. Phys. D: Appl. Phys. 56 405102
[36] Liu Z, Yang G, Luo X, Zhou F, Cheng Z and Yi Z 2024 Diam. Relat. Mater. 142 110786
[37] Zheng L, Cheng X, Cao D, Wang G, Wang Z, Xu D, Xia C, Shen L, Yu Y and Shen D 2014 ACS Appl. Mater. Interfaces 6 7014
[38] Zheng L, Cheng X, Cao D, Wang Z, Xu D, Xia C, Shen L and Yu Y 2014 Mater. Lett. 137 200
[39] Jin R, Huang L, Zhou C, Guo J, Fu Z, Chen J, Wang J, Li X, Yu F, Chen J, Zhao Z, Chen X, Lu W and Li G 2023 Nano Lett. 23 9105
[40] Müller M, Bouša M, Hájková Z, Ledinský M, Fejar A, Drogowska-Horná K, Kalbáč M and Frank O 2020 Nanomater. 10 589
[41] Wu D, Wang M, Feng H, Xu Z, Liu Y, Xia F, Zhang K, Kong W, Dong L and Yun M 2019 Carbon 155 618
[42] Falkovsky L A and Varlamov A A 2007 Eur. Phys. J. B 56 281
[43] Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L and Burke P 2012 Nano Res. 5 667
[44] Liang H, Ruan S, Zhang M, Su H and Li I 2015 Appl. Phys. Lett. 107 091602
[45] Cheng H, Chen S, Yu P, Duan X, Xie B and Tian J 2013 Appl. Phys. Lett. 103 203112
[46] Zentgraf T, Zhang S, Oulton R F and Zhang X 2009 Phys. Rev. B 80 195415
[47] Li M, Li H, Xu H, Xiong C, Zhao M, Liu C, Ruan B, Zhang B and Wu K 2020 New J. Phys. 22 103030
[48] Zhou X, Xu Y, Li Y, Cheng S, Yi Z, Xiao G, Wang Z and Chen Z 2022 Commun. Theor. Phys. 74 115501
[49] Xu H, Xu H, Yang X, Li M, Yu H, Cheng Y, Zhan S and Chen Z 2024 Phys. Lett. A 504 129401
[50] Liu Z, Qin Y, Zhou F, Zhou S, Ji C, Yang G, Xie Y, Yang R and Luo X 2024 Mod. Phys. Lett. B 38 2350248
[51] Wang Y, Luo G, Yan Z, Wang J, Tang C, Liu F and Zhu M 2024 J. Lightwave Technol. 42 406
计量
- 文章访问数: 53
- PDF下载量: 0
- 被引次数: 0