搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于协同效应的双偏振三重等离子诱导透明

张文杰 张小娇 胡树南 詹杰 高恩多 王琦 聂国政

引用本文:
Citation:

基于协同效应的双偏振三重等离子诱导透明

张文杰, 张小娇, 胡树南, 詹杰, 高恩多, 王琦, 聂国政

Dynamically Tunable Multi-Frequency Modulator via Triple Plasmon-Induced Transparency in Graphene Metasurfaces

ZHANG Wenjie, ZHANG Xiaojiao, HU Shunan, ZHAN Jie, GAO Enduo, WANG Qi, NIE Guozheng
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 传统等离子体诱导透明(plasmon induced transparency,PIT)受限于多种明暗模式间的耦合机制。为了突破该机制的局限性,本研究提出了一种双偏振石墨烯超表面结构,该结构由4组对称L型石墨烯环绕十字形中空石墨烯组成,通过两个单PIT之间的协同效应形成了三重PIT。研究发现,通过费米能级和载流子迁移率的调制,该结构作为慢光器件展现出高达500的群折射率,具备优异的慢光调控能力。作为偏振器件,该结构具有双偏振特性,在x和y偏振光入射下均能产生三重PIT窗口。特别的是,共振频率f6不受入射光偏振方向的影响。这种在不同偏振光下均具有良好的稳定性和抗干扰能力对偏振器件的设计尤为重要。因此,本研究设计了一种慢光调控和偏振选择于一体的多功能集成器件,为基于偏振不敏感的协同效应提供了新的理论指导和研究方向。
    Plasmon-induced transparency (PIT) is a class of electromagnetically induced transparency phenomena that enhances the interaction between light and matter, thereby improving the performance of nano-optical devices. However, conventional PITs usually rely on near-field coupling between bright and dark modes. In order to break through the limitation of this mechanism, this study proposes a dual-polarized graphene hypersurface structure, which consists of four groups of symmetric L-shaped graphene surrounding cross-shaped hollow graphene, forming a triple PIT through the synergistic effect between two single PITs. The accuracy of the results is verified by simulating the transmission spectra by Finite-difference time-domain(FDTD), which is highly similar to the coupled-mode theory(CMT) results. It is found that the structure exhibits a group refractive index of up to 500 as a slow-light device with excellent slow-light modulation through modulation of Fermi energy levels and carrier mobility. As a polarization device, the structure has dual polarization properties, producing a triple PIT window at the incidence of both x and y polarized light. In particular, the resonant frequency f6 is not affected by the direction of polarization of the incident light. This good stability and immunity to interference in different polarized light is particularly important for the design of polarization devices. Meanwhile, we adjusted the length parameter of graphene L2 and found that the resonance frequency f6 remained highly stable, showing a better tolerance to structural changes. Therefore, in this study, a multifunctional integrated device with slow light modulation and polarization selection in one device is designed to provide new theoretical guidance and research direction for synergistic effect based on polarization insensitivity.
  • [1]

    Barnes W L, Dereux A and Ebbesen T W 2003 Nat. 424 824

    [2]

    Ebbesen T W, Genet C and Bozhevolnyi S I 2008 Phys. Today 61 44

    [3]

    Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401

    [4]

    Hutter E and Fendler J H 2004 Adv. Mater. 16 1685

    [5]

    Gramotnev D K and Bozhevolnyi S I 2010 Nat. Photon. 4 83

    [6]

    Farmani A, Mir A and Sharifpour Z 2018 Appl. Surf. Sci. 453 358

    [7]

    Creighton J A, Blatchford C G and Albrecht M G 1979 J. Chem. Soc., Faraday Trans. 2 75 790

    [8]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Jablan M, Buljan H and Soljačić M 2009 Phys. Rev. B 80 245435

    [10]

    Chen P Y, Argyropoulos C, Farhat M and Gomez-Diaz J S 2017 Nanophotonics 6 1239

    [11]

    Chen Z, Liu N, Nie G, Li Y, Su X, Tang X, Zeng Y and Liu Y 2024 Phys. B. 686 416073

    [12]

    Liu C, Bai Y, Zhou J, Zhao Q and Qiao L 2017 J. Korean Ceram. Soc. 54 349

    [13]

    Han M Y, Özyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805

    [14]

    Zhang B, Huang X, Chen G, Wang Z, Qian W, Zhang Z, Cai W, Du K, Zhou C, Wang T, Zhu W, He D and Wang S 2023 Opt. Laser Technol. 164 109431

    [15]

    Dhriti K M, Chowdhary A K, Chouhan B S, Sikdar D and Kumar G 2022 J. Phys. D: Appl. Phys. 55 285101

    [16]

    Li Z, Nie G, Chen Z, Zhan S and Lan L 2024 Opt. Lett. 49 3380

    [17]

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J and Wu P H 2023 Acta Phys. Sin. 72 128701 (in Chinese) [向星诚,马海贝,王磊,田达,张伟,张彩虹,吴敬波,范克彬,金飚兵,陈健,吴培亨 2023 物理学报 72 128701]

    [18]

    Li Z, Nie G, Wang J, Zhong F and Zhan S 2024 Phys. Rev. Appl. 21 034039

    [19]

    Zhan Y and Fan C 2023 Mater. Res. Express 10 055802

    [20]

    Zayats A V, Smolyaninov I I and Maradudin A A 2005 Phys. Rep. 408 131

    [21]

    Zhang H, Cao Y, Liu Y, Li Y and Zhang Y 2017 Opt. Commun. 391 9

    [22]

    Scott Z, Muhammad S and Shahbazyan T V 2022 J. Chem. Phys. 156 194702

    [23]

    Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel A P, Ustinov A V, Anlage S M and Soukoulis C M 2011 Phys. Rev. Lett. 107 043901

    [24]

    Cheng Y X, Xu H, Yu H F, Huang L Q, Gu Z C, Chen Y F, He L H, Chen Z Q and Hou H L 2025 Acta Phys. Sin. 74 067801 (in Chinese) [成昱轩,许辉,于鸿飞,黄林琴,谷志超,陈玉峰,贺龙辉,陈智全,侯海良 2025 物理学报 74 067801]

    [25]

    Yang H, Li G, Cao G, Zhao Z, Chen J, Ou K, Chen X and Lu W 2018 Opt. Express 26 5632

    [26]

    Tsakmakidis K L, Shen L, Schulz S A, Zheng X, Upham J, Deng X, Altug H, Vakakis A F and Boyd R 2017 Science 356 1260

    [27]

    He Z, Li L, Cui W, Wang Y, Xue W, Xu H, Yi Z, Li C and Li Z 2021 New J. Phys. 23 053015

    [28]

    Yan Y, Jiang Y, Li B and Deng C 2023 J. Lightwave Technol. 42 732

    [29]

    Hu S N, Li D Q, Zhan J, Gao E D, Wang Q, Liu N L and Nie G Z 2025 Acta Phys. Sin. 74 097801 (in Chinese) [胡树南,李德琼,詹杰,高恩多,王琦,刘南柳,聂国政 2025 物理学报 74 097801]

    [30]

    Li M, Xu H, Yang X, Xu H, Liu P, He L, Nie G, Dong Y and Chen Z 2023 Results Phys. 52 106798

    [31]

    Xu H, Zhao M, Xiong C, Zhang B, Zheng M, Zeng J, Xia H and Li H 2018 Phys. Chem. Chem. Phys. 20 25959

    [32]

    Zhou X, Xu Y, Li Y, Cheng S, Yi Z, Xiao G, Wang Z and Chen Z 2022 Commun. Theor. Phys. 75 015501

    [33]

    Liu Z, Zhang X, Zhang Z, Gao E, Zhou F, Li H and Luo X 2020 New J. Phys. 22 083006

    [34]

    Zhang X, Zhou F, Liu Z, Zhang B, Qin Y, Zhou S, Luo X, Gao E and Li H 2021 Opt. Express 29 29387

    [35]

    Ji C, Liu Z, Zhou F, Luo X, Yang G, Xie Y and Yang R 2023 J. Phys. D: Appl. Phys. 56 405102

    [36]

    Liu Z, Yang G, Luo X, Zhou F, Cheng Z and Yi Z 2024 Diam. Relat. Mater. 142 110786

    [37]

    Zheng L, Cheng X, Cao D, Wang G, Wang Z, Xu D, Xia C, Shen L, Yu Y and Shen D 2014 ACS Appl. Mater. Interfaces 6 7014

    [38]

    Zheng L, Cheng X, Cao D, Wang Z, Xu D, Xia C, Shen L and Yu Y 2014 Mater. Lett. 137 200

    [39]

    Jin R, Huang L, Zhou C, Guo J, Fu Z, Chen J, Wang J, Li X, Yu F, Chen J, Zhao Z, Chen X, Lu W and Li G 2023 Nano Lett. 23 9105

    [40]

    Müller M, Bouša M, Hájková Z, Ledinský M, Fejar A, Drogowska-Horná K, Kalbáč M and Frank O 2020 Nanomater. 10 589

    [41]

    Wu D, Wang M, Feng H, Xu Z, Liu Y, Xia F, Zhang K, Kong W, Dong L and Yun M 2019 Carbon 155 618

    [42]

    Falkovsky L A and Varlamov A A 2007 Eur. Phys. J. B 56 281

    [43]

    Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L and Burke P 2012 Nano Res. 5 667

    [44]

    Liang H, Ruan S, Zhang M, Su H and Li I 2015 Appl. Phys. Lett. 107 091602

    [45]

    Cheng H, Chen S, Yu P, Duan X, Xie B and Tian J 2013 Appl. Phys. Lett. 103 203112

    [46]

    Zentgraf T, Zhang S, Oulton R F and Zhang X 2009 Phys. Rev. B 80 195415

    [47]

    Li M, Li H, Xu H, Xiong C, Zhao M, Liu C, Ruan B, Zhang B and Wu K 2020 New J. Phys. 22 103030

    [48]

    Zhou X, Xu Y, Li Y, Cheng S, Yi Z, Xiao G, Wang Z and Chen Z 2022 Commun. Theor. Phys. 74 115501

    [49]

    Xu H, Xu H, Yang X, Li M, Yu H, Cheng Y, Zhan S and Chen Z 2024 Phys. Lett. A 504 129401

    [50]

    Liu Z, Qin Y, Zhou F, Zhou S, Ji C, Yang G, Xie Y, Yang R and Luo X 2024 Mod. Phys. Lett. B 38 2350248

    [51]

    Wang Y, Luo G, Yan Z, Wang J, Tang C, Liu F and Zhu M 2024 J. Lightwave Technol. 42 406

  • [1] 史寒旭, 李欣阳, 张钰如, 王友年. 超低频/射频联合驱动容性耦合等离子体中二次电子效应的模拟研究. 物理学报, doi: 10.7498/aps.74.20250341
    [2] 胡树南, 李德琼, 詹杰, 高恩多, 王琦, 刘南柳, 聂国政. 基于协同效应的等离子体诱导透明及光开关与慢光应用. 物理学报, doi: 10.7498/aps.74.20250078
    [3] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, doi: 10.7498/aps.72.20222264
    [4] 谢宝豪, 陈华俊, 孙轶. 多模光力系统中光力诱导透明引起的慢光效应. 物理学报, doi: 10.7498/aps.72.20230663
    [5] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析. 物理学报, doi: 10.7498/aps.71.20221365
    [6] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, doi: 10.7498/aps.71.20211397
    [7] 朱子豪, 高有康, 曾严, 程政, 马洪华, 易煦农. 基于四盘形谐振腔耦合波导的三波段等离子体诱导透明效应. 物理学报, doi: 10.7498/aps.71.20221397
    [8] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, doi: 10.7498/aps.70.20211397
    [9] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器. 物理学报, doi: 10.7498/aps.68.20191068
    [10] 张凯, 杜春光, 高健存. 长程表面等离子体的增强效应. 物理学报, doi: 10.7498/aps.66.227302
    [11] 杨友磊, 胡业民, 项农. 捕获电子对低杂波与电子回旋波的协同效应的影响. 物理学报, doi: 10.7498/aps.66.245202
    [12] 何玉娟, 章晓文, 刘远. 总剂量辐照对热载流子效应的影响研究. 物理学报, doi: 10.7498/aps.65.246101
    [13] 郝莹莹, 孟秀兰, 姚福宝, 赵国明, 王敬, 张连珠. N2-H2容性耦合等离子体电非对称效应的particle-in-cell/Monte Carlo模拟. 物理学报, doi: 10.7498/aps.63.185205
    [14] 沈云, 傅继武, 于国萍. 增益对一维周期结构慢光传输特性影响. 物理学报, doi: 10.7498/aps.63.174202
    [15] 黄捷, 白兴宇, 曾浩, 唐昌建. 托卡马克中ECW对LHW耦合特性的影响研究. 物理学报, doi: 10.7498/aps.62.025202
    [16] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究. 物理学报, doi: 10.7498/aps.61.053101
    [17] 黄永宪, 冷劲松, 田修波, 吕世雄, 李垚. 等离子体浸没离子注入非导电聚合物的适应性及栅网诱导效应的研究. 物理学报, doi: 10.7498/aps.61.155206
    [18] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦. 物理学报, doi: 10.7498/aps.59.6921
    [19] 谢红兰, 胡 雯, 罗红心, 杜国浩, 邓 彪, 陈荣昌, 薛艳玲, 师绍猛, 肖体乔. X射线荧光全息术中消除光源偏振效应和孪生像的重构新算法. 物理学报, doi: 10.7498/aps.57.7044
    [20] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, doi: 10.7498/aps.55.1769
计量
  • 文章访问数:  53
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-11

/

返回文章
返回