-
传统等离子体诱导透明(plasmon induced transparency, PIT)受限于多种明暗模式间的耦合机制. 为了突破该机制的局限性, 本研究提出了一种双偏振石墨烯超表面结构, 该结构由4组对称L型石墨烯环绕十字形中空石墨烯组成, 通过两个单PIT之间的协同效应形成了三重PIT. 研究发现, 通过费米能级和载流子迁移率的调制, 该结构作为慢光器件展现出高达500的群折射率, 具备优异的慢光调控能力. 作为偏振器件, 该结构具有双偏振特性, 在x和y偏振光入射下均能产生三重PIT窗口. 特别的是, 共振频率f6不受入射光偏振方向的影响. 这种在不同偏振光下均具有良好的稳定性和抗干扰能力对偏振器件的设计尤为重要. 因此, 本研究设计了一种慢光调控和偏振选择于一体的多功能集成器件, 为基于偏振不敏感的协同效应提供了新的理论指导和研究方向.Plasmon-induced transparency (PIT) is a class of electromagnetically induced transparency phenomenon that enhances the interaction between light and matter, thereby improving the performance of nano-optical devices. However, traditional PITs usually rely on near-field coupling between bright modes and dark modes. In order to break through the limitation of this mechanism, in this study we propose a dual-polarized graphene hypersurface structure, which consists of four groups of symmetric L-shaped graphene surrounding cross-shaped hollow graphene, forming a triple PIT through the synergistic effect between two single PITs. The accuracy of the results is verified by simulating the transmission spectra using the finite-difference time-domain (FDTD), which is highly similar to that of the coupled-mode theory (CMT) results. It is found that by modulating the Fermi energy levels and carrier mobility, this structure exhibits a group refractive index of up to 500 as a slow-light device, demonstrating excellent slow-light control capability. As a polarizing device, this structure has dual polarization characteristics and can generate a triple PIT window under both x and y polarized light incidence. In particular, the resonant frequency f6 is not affected by the direction of polarization of the incident light. This good stability and resistance to interference in various polarized light conditions are particularly important for designing polarization devices. Meanwhile, we adjust the length parameter of graphene L2 and find that the resonance frequency f6 is still highly stable, showing a better tolerance to structural changes. Therefore, in this study, a multifunctional integrated device with slow light modulation and polarization selection in one device is designed, providing new theoretical guidance and research directions for synergistic effects based on polarization insensitivity.
-
Keywords:
- plasmon-induced transparency /
- synergisticeffect /
- slow-light /
- polarization characteristics
-
图 6 不同石墨烯载流子迁移率条件下, 群折射率和相移随频率的变化(EF = 1.0 eV) (a) 0.5 m2/(V·s); (b) 1.0 m2/(V·s); (c) 2.0 m2/(V·s); (d) 3.0 m2/(V·s)
Fig. 6. Variation of group index and phase shift with frequency at graphene carrier mobilities of (a) 0.5 m2/(V·s), (b) 1.0 m2/(V·s), (c) 2.0 m2/(V·s), and (d) 3.0 m2/(V·s) (EF = 1.0 eV).
图 7 (a) 偏振光入射角从0°—90°变化的透射光谱; (b) 偏振光入射角的透射率随频率变化的三维演化; (c) 共振频率随角度变化的趋势图
Fig. 7. (a) Transmission spectra under varying polarization angles of incident light from 0° to 90°; (b) three-dimensional mapping of transmittance versus frequency and polarization angle; (c) trend plot of resonance frequency versus angle.
表 1 不同图案化石墨烯的性能比较
Table 1. Comparison of the properties of different patterned grapheme.
Reference
/yearModulation mode Material structure Group index Polarization direction or sensitive 2020[47] Dual-frequency Single-layer continuous patterned graphene 358 x-polarization 2021[34] Multiple-frequency Single-layer discrete patterned graphene 321 Polarization-insensitive 2022[48] Multiple-frequency Double-layer patterned graphene <500 x-polarization 2023[49] Dual-frequency Monolayer patterned black phosphorus 219 x-polarization 2023[50] Multiple-frequency Double-layer patterned graphene 424 Polarization-insensitive 2024[51] Multiple-frequency Single-layer silicon nanostrip array 320 x or y-polarization This work Multiple-frequency Single-layer discrete patterned graphene 500 x or y-polarization-insensitive -
[1] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
Google Scholar
[2] Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44
[3] Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401
Google Scholar
[4] Hutter E, Fendler J H 2004 Adv. Mater. 16 1685
Google Scholar
[5] Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83
Google Scholar
[6] Farmani A, Mir A, Sharifpour Z 2018 Appl. Surf. Sci. 453 358
Google Scholar
[7] Creighton J A, Blatchford C G, Albrecht M G 1979 J. Chem. Soc. , Faraday Trans. 75 790
Google Scholar
[8] Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402
Google Scholar
[9] Jablan M, Buljan H, Soljačić M 2009 Phys. Rev. B 80 245435
Google Scholar
[10] Chen P Y, Argyropoulos C, Farhat M, Gomez-Diaz J S 2017 Nanophotonics 6 1239
Google Scholar
[11] Chen Z Y, Liu N L, Nie G Z, Li Y Q, Su X, Tang X F, Zeng Y, Liu Y X 2024 Physica B. 686 416073
Google Scholar
[12] Liu C B, Bai Y, Zhou J, Zhao Q, Qiao L L 2017 J. Korean Ceram. Soc. 54 349
Google Scholar
[13] Han M Y, Özyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805
Google Scholar
[14] Zhang B H, Huang X T, Chen G, Wang Z, Qian W, Zhang Z X, Cai W Q, Du K, Zhou C, Wang T T, Zhu W, He D P, Wang S X 2023 Opt. Laser Technol. 164 109431
Google Scholar
[15] Dhriti K M, Chowdhary A K, Chouhan B S, Sikdar D, Kumar G 2022 J. Phys. D: Appl. Phys. 55 285101
Google Scholar
[16] Li Z L, Nie G Z, Chen Z Q, Zhan S P, Lan L F 2024 Opt. Lett. 49 3380
Google Scholar
[17] 向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨 2023 物理学报 72 128701
Google Scholar
Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys. Sin. 72 128701
Google Scholar
[18] Li Z L, Nie G Z, Wang J H, Zhong F, Zhan S P 2024 Phys. Rev. Appl. 21 034039
Google Scholar
[19] Zhan Y, Fan C Z 2023 Mater. Res. Express 10 055802
Google Scholar
[20] Zayats A V, Smolyaninov I I, Maradudin A A 2005 Phys. Rep. 408 131
Google Scholar
[21] Zhang H Y, Cao Y Y, Liu Y Z, Li Y, Zhang Y P 2017 Opt. Commun. 391 9
Google Scholar
[22] Scott Z, Muhammad S, Shahbazyan T V 2022 J. Chem. Phys. 156 194702
Google Scholar
[23] Kurter C, Tassin P, Zhang L, Koschny T, Zhuravel A P, Ustinov A V, Anlage S M, Soukoulis C M 2011 Phys. Rev. Lett. 107 043901
Google Scholar
[24] 成昱轩, 许辉, 于鸿飞, 黄林琴, 谷志超, 陈玉峰, 贺龙辉, 陈智全, 侯海良 2025 物理学报 74 067801
Google Scholar
Cheng Y X, Xu H, Yu H F, Huang L Q, Gu Z C, Chen Y F, He L H, Chen Z Q, Hou H L 2025 Acta Phys. Sin. 74 067801
Google Scholar
[25] Yang H, Li G H, Cao G T, Zhao Z Y, Chen J, Ou K, Chen X S, Lu W 2018 Opt. Express 26 5632
Google Scholar
[26] Tsakmakidis K L, Shen L, Schulz S A, Zheng X, Upham J, Deng X, Altug H, Vakakis A F, Boyd R 2017 Science 356 1260
Google Scholar
[27] He Z H, Li L Q, Cui W, Wang Y X, Xue W W, Xu H, Yi Z, Li C J, Li Z X 2021 New J. Phys. 23 053015
Google Scholar
[28] Yan Y, Jiang Y F, Li B X, Deng C S 2023 J. Lightwave Technol. 42 732
[29] 胡树南, 李德琼, 詹杰, 高恩多, 王琦, 刘南柳, 聂国政 2025 物理学报 74 097801
Google Scholar
Hu S N, Li D Q, Zhan J, Gao E D, Wang Q, Liu N L, Nie G Z 2025 Acta Phys. Sin. 74 097801
Google Scholar
[30] Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798
Google Scholar
[31] Xu H, Zhao M Z, Xiong C X, Zhang B H, Zheng M F, Zeng J P, Xia H, Li H J 2018 Phys. Chem. Chem. Phys. 20 25959
Google Scholar
[32] Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 75 015501
[33] Liu Z M, Zhang X, Zhang Z B, Gao E D, Zhou F Q, Li H J, Luo X 2020 New J. Phys. 22 083006
Google Scholar
[34] Zhang X, Zhou F Q, Liu Z M, Zhang Z B, Qin Y P, Zhou S S, Luo X, Gao E D, Li H J 2021 Opt. Express 29 29387
Google Scholar
[35] Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D: Appl. Phys. 56 405102
Google Scholar
[36] Liu Z M, Yang G X, Luo X, Zhou F Q, Cheng Z Q, Yi Z 2024 Diam. Relat. Mater. 142 110786
Google Scholar
[37] Zheng L, Cheng X H, Cao D, Wang G, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H, Shen D S 2014 ACS Appl. Mater. Interfaces 6 7014
Google Scholar
[38] Zheng L, Cheng X H, Cao D, Wang Z J, Xu D W, Xia C, Shen L Y, Yu Y H 2014 Mater. Lett. 137 200
Google Scholar
[39] Jin R, Huang L J, Zhou C B, Guo J Y, Fu Z C, Chen J, Wang J, Li X, Yu F L, Chen J, Zhao Z Y, Chen X S, Lu W, Li G H 2023 Nano Lett. 23 9105
Google Scholar
[40] Müller M, Bouša M, Hájková Z, Ledinský M, Fejar A, Drogowska-Horná K, Kalbáč M, Frank O 2020 Nanomaterials 10 589
Google Scholar
[41] Wu D, Wang M, Feng H, Xu Z X, Liu Y P, Xia F, Zhang K, Kong W J, Dong L F, Yun M J 2019 Carbon 155 618
Google Scholar
[42] Falkovsky L A, Varlamov A A 2007 Eur. Phys. J. B 56 281
Google Scholar
[43] Rouhi N, Capdevila S, Jain D, Zand K, Wang Y Y, Brown E, Jofre L, Burke P 2012 Nano Res. 5 667
Google Scholar
[44] Liang H W, Ruan S C, Zhang M, Su H, Li I L 2015 Appl. Phys. Lett. 107 091602
Google Scholar
[45] Cheng H, Chen S Q, Yu P, Duan X Y, Xie B Y, Tian J G 2013 Appl. Phys. Lett. 103 203112
Google Scholar
[46] Zentgraf T, Zhang S, Oulton R F, Zhang X 2009 Phys. Rev. B 80 195415
Google Scholar
[47] Li M, Li H J, Xu H, Xiong C X, Zhao M Z, Liu C, Ruan B X, Zhang B X, Wu K 2020 New J. Phys. 22 103030
Google Scholar
[48] Zhou X W, Xu Y P, Li Y H, Cheng S B, Yi Z, Xiao G H, Wang Z Y, Chen Z Y 2022 Commun. Theor. Phys. 74 115501
Google Scholar
[49] Xu H Y, Xu H, Yang X J, Li M, Yu H F, Cheng Y X, Zhan S P, Chen Z Q 2024 Phys. Lett. A 504 129401
Google Scholar
[50] Liu Z M, Qin Y P, Zhou F Q, Zhou S S, Ji C, Yang G X, Xie Y D, Yang R H, Luo X 2024 Mod. Phys. Lett. B 38 2350248
Google Scholar
[51] Wang Y J, Luo G L, Yan Z D, Wang J P, Tang C J, Liu F X, Zhu M W 2024 J. Lightwave Technol. 42 406
Google Scholar
计量
- 文章访问数: 263
- PDF下载量: 3
- 被引次数: 0