搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N2-H2容性耦合等离子体电非对称效应的particle-in-cell/Monte Carlo模拟

郝莹莹 孟秀兰 姚福宝 赵国明 王敬 张连珠

引用本文:
Citation:

N2-H2容性耦合等离子体电非对称效应的particle-in-cell/Monte Carlo模拟

郝莹莹, 孟秀兰, 姚福宝, 赵国明, 王敬, 张连珠

Simulations of electrical asymmetry effect on N2-H2 capacitively coupled plasma by particle-in-cell/Monte Carlo model

Hao Ying-Ying, Meng Xiu-Lan, Yao Fu-Bao, Zhao Guo-Ming, Wang Jing, Zhang Lian-Zhu
PDF
导出引用
  • H2-N2混合气体电容性耦合射频放电在有机低介电系数材料刻蚀中具潜在研究意义. 采用particle-in-cell/Monte Carlo模型模拟了双频(13.56 MHz/27.12 MHz)电压源分别接在结构对称的两个电极上的H2-N2容性耦合等离子体特征,研究了其电非对称效应. 模拟结果表明,通过调节两谐波间的相位角θ,可以改变其电场、等离子体密度、离子流密度的轴向分布及离子轰击电极的能量分布. 当相位角θ 为0°时,低频电极(晶片)附近主要离子(H3+)的密度最小,离子(H3+,H2+,H+)轰击低频电极的流密度及平均能量最高;当θ从0°变化90°时,低频电极的自偏压从-103 V到106 V 近似线性增加,轰击电极的离子流密度变化约±18%,H+离子轰击低频电极的最大能量约减小2.5 倍,轰击电极的平均能量约变化2倍,表明氢离子能量和离子流几乎能独立控制.
    A N2-H2 capacitively coupled rf discharge has potential applications in etching of organic low dielectric constant (low-k) material for microelectronics technology. In this paper, we investigate the characteristic and electrical asymmetry effect (EAE) on the N2-H2 capacitively coupled plasma used for low-k material etching by particle-in-cell/Monte Carlo (PIC/MC) model, in which the two frequency sources of 13.56 MHz and 27.12 MHz are applied separately to the two electrodes in geometrically in symmetry. It is found that the plasma density profiles, the ion flux density profiles and the energy distribution of ion bombarding electrodes can be changed by adjusting the phase angle θ between the two harmonics. When the phase angle θ is 0°, the density of primary ion (H3+) near low frequencie electrode (LFE) (wafer) is smallest, whereas flux and average energy of ion (H+, H3+, H2+) bombarding LFE are biggest; if the phase angle θ is tuned from 0° to 90°, the dc self-bias increases almost linearly from -103 V to 106 V, ion flux bombarding the LFE decreases by ±18%, the maximum of the ion bombarding energy at the LFE decreases by a factor of 2.5. For the N2-H2 capacitively coupled rf discharge, for the case of two frequencies (13.56 MHz/27.12 MHz) applied separately to the two electrodes, can realize separate control of ion energy and flux via the EAE, and is generally in qualitative agreement with experimental and modeling investigation on the Ar and O2 plasma for a dual-frequency voltage source of 13.56 MHz and 27.12 MHz is applied to the powered electrode. This work supplies a references basis for experimental research and technology that the EAE on the H2-N2 plasmas is used for organic low-k material etching process.
    • 基金项目: 河北省自然科学基金(批准号:A2012205072)资助的课题.
    • Funds: Project supported by the Hebei Natural Science Foundation of China (Grant No. A2012205072).
    [1]

    Chen S T, Chen G S, Yang T J, Chang T C, Yang W H 2003 Electrochem. Solid-State Lett. 6 4

    [2]

    Nagai H, Hiramatsu M, Hori M, Goto T 2003 Jpn. J. Appl. Phys. 42 L212

    [3]

    van Laer K, Tinck S, Samara V, de Marneffe J F, Bogaerts A 2013 Plasma Sources Sci. Technol. 22 025011

    [4]

    Liu X M, Song Y H, Wang Y N 2011 Chin. Phys. B 20 065205

    [5]

    Jiang X Z, Liu Y X, Bi Z H, Lu W Q, Wang Y N 2012 Acta Phys. Sin. 61 015204(in Chinese)[蒋相站, 刘永新, 毕振华, 陆文琪, 王友年 2012 物理学报 61 015204]

    [6]

    Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89

    [7]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506

    [8]

    Heil B G, Czarnetzki U, Brinkmann R P, Mussenbrock T 2008 J. Phys. D: Appl. Phys. 41 165202

    [9]

    Donkó Z, Schulze J, Heil B G, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 025205

    [10]

    Czarnetzki U, Schulze J, Schunge E, Donko Z 2011 Plasma Sources Sci. Technol. 20 024010

    [11]

    Schulze J, Schngel E, Czarnetzki U, Donkó Z 2009 J. Appl. Phys. 106 063307

    [12]

    Schulze J, Donko Z, Luggenholscher D, Czarnetzki U 2009 Plasma Sources Sci. Technol. 18 034011

    [13]

    Schulze J, Derzsi A, Donko Z 2011 Plasma Sources Sci. Technol. 20 045008

    [14]

    Schulze J, Schungel E, Donko Z, Czarnetzki U 2010 Plasma Sources Sci. Technol. 19 045028

    [15]

    Schungel E, Eremin D, Schulze J, Mussenbrock T, Czarnetzki U 2012 J. Appl. Phys. 112 053302

    [16]

    Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308

    [17]

    Schungel E, Zhang Q Z, Iwashita S, Schulze J, Hou L J, Wang Y N, Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 285205

    [18]

    Zhang Q Z, Zhao S X, Jiang W, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 305203

    [19]

    Shon C H, Makabe T 2004 IEEE Trans. Plasma Sci. 32 390

    [20]

    Ishihara K, Shimada T, Yagisawa T, Makabe T 2006 Plasma Phys. Control. Fusion 48 B99

    [21]

    Zhang L Z, Yao F B, Zhao G M, Hao Y Y, Sun Q 2014 Plasma Sci. Technol. 16 203

    [22]

    Uchida S, Takashima S, Hori M, Fukasawa M, Ohshima K, Nagahata K, Tatsumi T 2008 J. Appl. Phys. 103 073303

    [23]

    Nanbu K 2000 IEEE Trans. Plasma Sci. 28 917

    [24]

    Zhang L Z, Meng X L, Zhang S, Gao S X, Zhao G M 2013 Acta Phys. Sin. 62 075201(in Chinese)[张连珠, 孟秀兰, 张素, 高书侠, 赵国明 2013 物理学报 62 075201]

    [25]

    Wakayama G, Nanbu K 2003 IEEE Trans. Plasma Sci. 31 638

    [26]

    Itikawa Y, Hayashi M, Ichimura A 1986 J. Phys. Chem. Ref. Data. 15 985

    [27]

    Itikawa Y 2006 J. Phys. Chem. Ref. Data. 35 31

    [28]

    Bogaerts A, Gijbels R 2002 Spectrochim. Acta B 57 1071

    [29]

    Itikawa Y, Yoon J S, Song M Y, Han J M, Hwang S H 2008 J. Phys. Chem. Ref. Data. 37 913

    [30]

    Phelps A V 1991 J. Phys. Chem. Ref. Data. 20 557

    [31]

    Tosi P, Dmitrijev O, Bassi B 1992 J. Chem. Phys. 97 3333

    [32]

    Phelps A V 1990 J. Phys. Chem. Ref. Data. 19 653

    [33]

    Phelps A V 2009 Phys. Rev. E 79 066401

    [34]

    Simko T, Martisovits V 1997 Phys. Rev. E 56 5908

  • [1]

    Chen S T, Chen G S, Yang T J, Chang T C, Yang W H 2003 Electrochem. Solid-State Lett. 6 4

    [2]

    Nagai H, Hiramatsu M, Hori M, Goto T 2003 Jpn. J. Appl. Phys. 42 L212

    [3]

    van Laer K, Tinck S, Samara V, de Marneffe J F, Bogaerts A 2013 Plasma Sources Sci. Technol. 22 025011

    [4]

    Liu X M, Song Y H, Wang Y N 2011 Chin. Phys. B 20 065205

    [5]

    Jiang X Z, Liu Y X, Bi Z H, Lu W Q, Wang Y N 2012 Acta Phys. Sin. 61 015204(in Chinese)[蒋相站, 刘永新, 毕振华, 陆文琪, 王友年 2012 物理学报 61 015204]

    [6]

    Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89

    [7]

    Kawamura E, Lieberman M A, Lichtenberg A J 2006 Phys. Plasmas 13 053506

    [8]

    Heil B G, Czarnetzki U, Brinkmann R P, Mussenbrock T 2008 J. Phys. D: Appl. Phys. 41 165202

    [9]

    Donkó Z, Schulze J, Heil B G, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 025205

    [10]

    Czarnetzki U, Schulze J, Schunge E, Donko Z 2011 Plasma Sources Sci. Technol. 20 024010

    [11]

    Schulze J, Schngel E, Czarnetzki U, Donkó Z 2009 J. Appl. Phys. 106 063307

    [12]

    Schulze J, Donko Z, Luggenholscher D, Czarnetzki U 2009 Plasma Sources Sci. Technol. 18 034011

    [13]

    Schulze J, Derzsi A, Donko Z 2011 Plasma Sources Sci. Technol. 20 045008

    [14]

    Schulze J, Schungel E, Donko Z, Czarnetzki U 2010 Plasma Sources Sci. Technol. 19 045028

    [15]

    Schungel E, Eremin D, Schulze J, Mussenbrock T, Czarnetzki U 2012 J. Appl. Phys. 112 053302

    [16]

    Zhang Q Z, Jiang W, Hou L J, Wang Y N 2011 J. Appl. Phys. 109 013308

    [17]

    Schungel E, Zhang Q Z, Iwashita S, Schulze J, Hou L J, Wang Y N, Czarnetzki U 2011 J. Phys. D: Appl. Phys. 44 285205

    [18]

    Zhang Q Z, Zhao S X, Jiang W, Wang Y N 2012 J. Phys. D: Appl. Phys. 45 305203

    [19]

    Shon C H, Makabe T 2004 IEEE Trans. Plasma Sci. 32 390

    [20]

    Ishihara K, Shimada T, Yagisawa T, Makabe T 2006 Plasma Phys. Control. Fusion 48 B99

    [21]

    Zhang L Z, Yao F B, Zhao G M, Hao Y Y, Sun Q 2014 Plasma Sci. Technol. 16 203

    [22]

    Uchida S, Takashima S, Hori M, Fukasawa M, Ohshima K, Nagahata K, Tatsumi T 2008 J. Appl. Phys. 103 073303

    [23]

    Nanbu K 2000 IEEE Trans. Plasma Sci. 28 917

    [24]

    Zhang L Z, Meng X L, Zhang S, Gao S X, Zhao G M 2013 Acta Phys. Sin. 62 075201(in Chinese)[张连珠, 孟秀兰, 张素, 高书侠, 赵国明 2013 物理学报 62 075201]

    [25]

    Wakayama G, Nanbu K 2003 IEEE Trans. Plasma Sci. 31 638

    [26]

    Itikawa Y, Hayashi M, Ichimura A 1986 J. Phys. Chem. Ref. Data. 15 985

    [27]

    Itikawa Y 2006 J. Phys. Chem. Ref. Data. 35 31

    [28]

    Bogaerts A, Gijbels R 2002 Spectrochim. Acta B 57 1071

    [29]

    Itikawa Y, Yoon J S, Song M Y, Han J M, Hwang S H 2008 J. Phys. Chem. Ref. Data. 37 913

    [30]

    Phelps A V 1991 J. Phys. Chem. Ref. Data. 20 557

    [31]

    Tosi P, Dmitrijev O, Bassi B 1992 J. Chem. Phys. 97 3333

    [32]

    Phelps A V 1990 J. Phys. Chem. Ref. Data. 19 653

    [33]

    Phelps A V 2009 Phys. Rev. E 79 066401

    [34]

    Simko T, Martisovits V 1997 Phys. Rev. E 56 5908

  • [1] 操礼阳, 马晓萍, 邓丽丽, 卢曼婷, 辛煜. 射频容性耦合Ar/O2等离子体的轴向诊断. 物理学报, 2021, 70(11): 115204. doi: 10.7498/aps.70.20202113
    [2] 王芳, 陈亚珂, 李传强, 马涛, 卢颖慧, 刘恒, 金婵. 非对称银膜多孔硅-氟化钙等离子体波导及其波导灵敏度特性. 物理学报, 2021, 70(22): 224201. doi: 10.7498/aps.70.20210704
    [3] 董婉, 徐海文, 戴忠玲, 宋远红, 王友年. 电非对称双频容性耦合CF4/Ar放电电极间距对放电模式和刻蚀剖面的影响. 物理学报, 2021, 70(9): 095213. doi: 10.7498/aps.70.20210546
    [4] 胡艳婷, 张钰如, 宋远红, 王友年. 相位角对容性耦合电非对称放电特性的影响. 物理学报, 2018, 67(22): 225203. doi: 10.7498/aps.67.20181400
    [5] 张凯, 杜春光, 高健存. 长程表面等离子体的增强效应. 物理学报, 2017, 66(22): 227302. doi: 10.7498/aps.66.227302
    [6] 杨郁, 唐成双, 赵一帆, 虞一青, 辛煜. 甚高频激发的容性耦合Ar+O2等离子体电负特性研究. 物理学报, 2017, 66(18): 185202. doi: 10.7498/aps.66.185202
    [7] 何曼丽, 王晓, 张明, 王黎, 宋蕊. 低温等离子体中H2(D2和T2)的振动分布. 物理学报, 2014, 63(12): 125201. doi: 10.7498/aps.63.125201
    [8] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云. 具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应. 物理学报, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [9] 郑仕健, 丁芳, 谢新华, 汤中亮, 张一川, 李唤, 杨宽, 朱晓东. 高气压直流辉光CH4/H2等离子体的气相过程诊断. 物理学报, 2013, 62(16): 165204. doi: 10.7498/aps.62.165204
    [10] 刘小亮, 孙少华, 曹瑜, 孙铭泽, 刘情操, 胡碧涛. 飞秒激光低压N2等离子体特性的实验研究. 物理学报, 2013, 62(4): 045201. doi: 10.7498/aps.62.045201
    [11] 张茂平, 钟伟荣, 艾保全. 非对称双链分子结构的热整流效应. 物理学报, 2011, 60(6): 060511. doi: 10.7498/aps.60.060511
    [12] 兰宇丹, 何立明, 丁伟, 王峰. 不同初始温度下H2/O2混合物等离子体的演化. 物理学报, 2010, 59(4): 2617-2621. doi: 10.7498/aps.59.2617
    [13] 黎欢. 非对称Anderson模型的重整微扰展开. 物理学报, 2010, 59(11): 8052-8062. doi: 10.7498/aps.59.8052
    [14] 文书堂, 张红卫, 张丽伟, 陈改荣, 卢景霄. SiH4/H2等离子体气相生长硅薄膜的动力学模型. 物理学报, 2010, 59(7): 4901-4910. doi: 10.7498/aps.59.4901
    [15] 高 飞, 毛 明, 丁振峰, 王友年. 射频感应耦合Ar-N2等离子体物理特性的Langmuir探针测量及理论研究. 物理学报, 2008, 57(8): 5123-5129. doi: 10.7498/aps.57.5123
    [16] 祁 菁, 金 晶, 胡海龙, 高平奇, 袁保和, 贺德衍. H2对Ar稀释SiH4等离子体CVD制备多晶硅薄膜的影响. 物理学报, 2006, 55(11): 5959-5963. doi: 10.7498/aps.55.5959
    [17] 尚也淳, 张义门, 张玉明. 6H-SiC电子输运的Monte Carlo模拟. 物理学报, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
    [18] 张玉明, 张义门, 崔杰, 罗晋生. 3C-SiC体特性的Monte Carlo模型. 物理学报, 1997, 46(11): 2215-2222. doi: 10.7498/aps.46.2215
    [19] 张国民, 杨传章. 自旋S=3/2和S=2 Blume-Capel模型相变的Monte Carlo研究. 物理学报, 1995, 44(6): 958-962. doi: 10.7498/aps.44.958
    [20] 张承福. 等离子体模型碰撞项的比较. 物理学报, 1986, 35(7): 947-952. doi: 10.7498/aps.35.947
计量
  • 文章访问数:  2422
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-12
  • 修回日期:  2014-05-07
  • 刊出日期:  2014-09-05

N2-H2容性耦合等离子体电非对称效应的particle-in-cell/Monte Carlo模拟

  • 1. 河北师范大学物理科学与信息工程学院, 石家庄 050024
    基金项目: 河北省自然科学基金(批准号:A2012205072)资助的课题.

摘要: H2-N2混合气体电容性耦合射频放电在有机低介电系数材料刻蚀中具潜在研究意义. 采用particle-in-cell/Monte Carlo模型模拟了双频(13.56 MHz/27.12 MHz)电压源分别接在结构对称的两个电极上的H2-N2容性耦合等离子体特征,研究了其电非对称效应. 模拟结果表明,通过调节两谐波间的相位角θ,可以改变其电场、等离子体密度、离子流密度的轴向分布及离子轰击电极的能量分布. 当相位角θ 为0°时,低频电极(晶片)附近主要离子(H3+)的密度最小,离子(H3+,H2+,H+)轰击低频电极的流密度及平均能量最高;当θ从0°变化90°时,低频电极的自偏压从-103 V到106 V 近似线性增加,轰击电极的离子流密度变化约±18%,H+离子轰击低频电极的最大能量约减小2.5 倍,轰击电极的平均能量约变化2倍,表明氢离子能量和离子流几乎能独立控制.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回