-
大气压介质阻挡放电(DBD)可以在常压下产生非平衡等离子体,已经成为热点研究领域. 通过脉冲或交变电源激发放电,研究电源输出特性、电源与放电发生器负载间的匹配和外界条件对放电的影响对于理解放电现象和提高放电效率具有重要意义. 本文采用Lissajous图形法,分别研究了驱动电压、气流速率等因素影响同轴DBD发生器介质层等效电容及负载幅频特性的规律. 结果表明,气流速率和驱动电压等外界条件影响DBD发生器的负载特性:介质层等效电容随气流速率增大而减小,随驱动电压增大而增大;幅频特性曲线均表现出RLC回路谐振现象,谐振频率随气流速率增大而增大,随驱动电压增大而减小. 通过对比发现,介质层等效电容随频率的变化曲线与幅频特性曲线具有一致的特征,介质层等效电容是影响电路谐振频率动态变化的主要因素. 提出了一种有关介质层等效电容的形成机制.Dielectric barrier discharge (DBD) can produce non-equilibrium plasma at atmospheric pressure, and it has become a hot point in recent years. For the DBD excited by pulsed or alternated currents, the effects of the loading performance of power supply, the matching between supply and discharge reactor and the discharge phenomena on its discharge are interesting issues. The studies of these issues are of great importance for understanding the DBD processes and improving the power supply efficiency. In this paper, the Lissajous figures of a DBD reactor with coaxial electrode configuration are measured. The loading performance of the DBD reactor and the dependences of excitation voltage and air flow rate on the dielectric layer equivalent capacitance are studied in atmospheric air. According to the experimental data and circuit modeling analysis, it is proved that the dielectric layer capacitance decreases with the increase of air flow rate, but increases with the increase of excitation voltage. The amplitude-frequency performance of the reactor reveals significant RLC circuit resonance. The resonance frequency of the reactor has the same behavior as its dielectric layer capacitance. Therefore it shows that the dielectric layer capacitance is the main factor for the resonance frequency evolution. A possible mechanism responsible for the dielectric layer capacitance is also presented.
-
Keywords:
- dielectric barrier discharge /
- loading performance /
- impedance matching /
- plasma
[1] Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
[2] Massines F, Rabehi A, Decomps P, Gadri R R, Segur P, Mayoux C 1998 J. Appl. Phys. 83 2950
[3] Gherardi N, Massines F 2001 IEEE Trans. Plasma Sci. 29 536
[4] Masoud N, Martus K, Figus M, Becker K 2005 Contrib. Plasma Phys. 45 32
[5] Rahel J, Sherman D M 2005 Phys. D: Appl. Phys. 38 547
[6] Gherardi N, Gouda G, Gat E, Ricard A E, Massines F 2000 Plasma Sources Sci. Technol. 9 340
[7] Popa S D 1996 Phys. D: Appl. Phys. 29 411
[8] Liang Z, Luo H Y, Wang X X, Guan Z C, Wang L M 2010 Acta Phys. Sin. 59 8739(in Chinese)[梁卓, 罗海云, 王新新, 关志成, 王黎明 2010 物理学报 59 8739]
[9] Li X C, Niu D Y, Xu L F, Jia P Y, Chang Y Y 2012 Chin. Phys. B 21 075204
[10] Dong L F, Mao Z G, Ran J X 2005 Chin. Phys. 14 1618
[11] Nersisyan G, Graham W G 2004 Plasma Sources Sci. Technol. 13 582
[12] Li Q, Li J T, Zhu W C, Zhu X M, Pu Y K 2009 Appl. Phys. Lett. 95 141502
[13] Akishev Y, Goossens O, Callebaut T, Leys C, Napartovich A, Trushkin N 2001 J. Phys. D: Appl. Phys. 34 2875
[14] Luo H Y, Liang Z, Wang X X, Guan Z C, Wang L M 2008 J. Phys. D: Appl. Phys. 41 205205
[15] Dong L F, Yang Y J, Fan W L, Yue H, Wang S, Xiao H 2010 Acta Phys. Sin. 59 1917(in Chinese)[董丽芳, 杨玉杰, 范伟丽, 岳晗, 王帅, 肖红 2010 物理学报 59 1917]
[16] Jiang N, Cao Z X 2010 Acta Phys. Sin. 59 3324(in Chinese)[江南, 曹则贤 2010 物理学报 59 3324]
[17] Liu X M, Song Y H, Wang Y N 2011 Chin. Phys. B 20 065205
[18] Chen Z 2002 IEEE Trans. Plasma Sci. 30 1922
[19] Zhang Y, Shang Z X, L Y D, Gu B 2013 Chin. J. Vacuum Sci. Technol. 33 342 (in Chinese)[张燕, 尚中选, 吕印定, 顾彪 2013 真空科学与技术学报 33 342]
[20] Manley T C 1943 Trans. Electrochem. Soc. 84 83
[21] Pal U N, Gulati P, Kumar N, Kumar M, Tyagi M S, Meena B L, Sharma A K, Prakash R 2011 IEEE Trans. Plasma Sci. 39 1475
[22] Kriegseis J, Möller B, Grundmann S, Tropea C 2011 J. Electrostat. 69 302
[23] Wang Y C, Wu M Q, Xu F Y, Zhang S R 2005 J. Sichuan Univ. (Nat. Sci. Ed.) 42 393 (in Chinese)[王仪财, 吴孟强, 许峰云, 张树人 2005 四川大学学报 (自然科学版) 42 393]
-
[1] Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
[2] Massines F, Rabehi A, Decomps P, Gadri R R, Segur P, Mayoux C 1998 J. Appl. Phys. 83 2950
[3] Gherardi N, Massines F 2001 IEEE Trans. Plasma Sci. 29 536
[4] Masoud N, Martus K, Figus M, Becker K 2005 Contrib. Plasma Phys. 45 32
[5] Rahel J, Sherman D M 2005 Phys. D: Appl. Phys. 38 547
[6] Gherardi N, Gouda G, Gat E, Ricard A E, Massines F 2000 Plasma Sources Sci. Technol. 9 340
[7] Popa S D 1996 Phys. D: Appl. Phys. 29 411
[8] Liang Z, Luo H Y, Wang X X, Guan Z C, Wang L M 2010 Acta Phys. Sin. 59 8739(in Chinese)[梁卓, 罗海云, 王新新, 关志成, 王黎明 2010 物理学报 59 8739]
[9] Li X C, Niu D Y, Xu L F, Jia P Y, Chang Y Y 2012 Chin. Phys. B 21 075204
[10] Dong L F, Mao Z G, Ran J X 2005 Chin. Phys. 14 1618
[11] Nersisyan G, Graham W G 2004 Plasma Sources Sci. Technol. 13 582
[12] Li Q, Li J T, Zhu W C, Zhu X M, Pu Y K 2009 Appl. Phys. Lett. 95 141502
[13] Akishev Y, Goossens O, Callebaut T, Leys C, Napartovich A, Trushkin N 2001 J. Phys. D: Appl. Phys. 34 2875
[14] Luo H Y, Liang Z, Wang X X, Guan Z C, Wang L M 2008 J. Phys. D: Appl. Phys. 41 205205
[15] Dong L F, Yang Y J, Fan W L, Yue H, Wang S, Xiao H 2010 Acta Phys. Sin. 59 1917(in Chinese)[董丽芳, 杨玉杰, 范伟丽, 岳晗, 王帅, 肖红 2010 物理学报 59 1917]
[16] Jiang N, Cao Z X 2010 Acta Phys. Sin. 59 3324(in Chinese)[江南, 曹则贤 2010 物理学报 59 3324]
[17] Liu X M, Song Y H, Wang Y N 2011 Chin. Phys. B 20 065205
[18] Chen Z 2002 IEEE Trans. Plasma Sci. 30 1922
[19] Zhang Y, Shang Z X, L Y D, Gu B 2013 Chin. J. Vacuum Sci. Technol. 33 342 (in Chinese)[张燕, 尚中选, 吕印定, 顾彪 2013 真空科学与技术学报 33 342]
[20] Manley T C 1943 Trans. Electrochem. Soc. 84 83
[21] Pal U N, Gulati P, Kumar N, Kumar M, Tyagi M S, Meena B L, Sharma A K, Prakash R 2011 IEEE Trans. Plasma Sci. 39 1475
[22] Kriegseis J, Möller B, Grundmann S, Tropea C 2011 J. Electrostat. 69 302
[23] Wang Y C, Wu M Q, Xu F Y, Zhang S R 2005 J. Sichuan Univ. (Nat. Sci. Ed.) 42 393 (in Chinese)[王仪财, 吴孟强, 许峰云, 张树人 2005 四川大学学报 (自然科学版) 42 393]
计量
- 文章访问数: 6849
- PDF下载量: 944
- 被引次数: 0