搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同轴枪放电等离子体电流片的运动特性研究

漆亮文 赵崇霄 闫慧杰 王婷婷 任春生

引用本文:
Citation:

同轴枪放电等离子体电流片的运动特性研究

漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生

Motion characteristics of coaxial gun discharge plasma current sheet

Qi Liang-Wen, Zhao Chong-Xiao, Yan Hui-Jie, Wang Ting-Ting, Ren Chun-Sheng
PDF
HTML
导出引用
  • 同轴枪放电可以产生高速度、高密度的等离子体射流, 在天体物理、核物理等研究领域具有广泛的应用. 基于同轴枪放电等离子体运动的“雪犁模型”分析, 本实验通过对等离子体光电信号和磁信号的测量及放电照片的拍摄, 研究了不同放电电流和气压对同轴枪放电等离子体电流片的运动特性、电流通道分布的影响. 实验结果发现: 一次放电过程中, 气压为10 Pa、放电电流为35.7—69.8 kA时, 随着放电电流的增加, 等离子体喷射速度增加, 输运距离与离子携带的轴向动能成正比, 大电流条件下, 等离子体喷出枪口时易于在枪底端形成新的电流通道; 气压为5—40 Pa、放电电流为49.8 kA时, 随着气压的增加, 等离子体喷射速度减小, 输运距离缩短, 高气压下, 等离子体喷出枪口时在枪底端未产生新的放电通道, 这与放电过程中遗留在枪底端的带电粒子和电流片渗漏残留在枪内的中性粒子共同形成的阻抗通道有关; 电流反向时, 二次放电击穿位置发生在电极头部, 放电过程中存在多次放电现象.
    The coaxial gun discharge, used as plasma jet with high density and velocity, has a wide variety of applications such as plasma space propulsion, simulation experiment of thermal transient events in the International Thermonuclear Experimental Reactor, plasma refueling for fusion reactors and a laboratory scale platform for studying astrophysical phenomena. The plasma produced in the coaxial gun can be accelerated by self-induced Lorentz force, and the ionization in the transport process can be based on " snow-plow model” in which a coaxial current sheet moves forward and sweeps a large amount of the gas between two electrodes to cause the plasma dump. Based on the measurements of discharge current, voltage, photocurrent and magnetic signal, the experimental investigation on the characteristics of plasma motion and current sheet channel distribution in the gun operated under different discharge conditions and various pressures is carried out. In this paper, it is emphasized to explore the electrical and dynamic properties about plasma in the first half-cycle of current. The results show that the plasma velocity increases with the increase of the current amplitude, and that the transport distance is proportional to the axial kinetic energy of ions when the pressure is fixed at 10 Pa and discharge current is adjusted from 35.7 kA to 69.8 kA. Moreover, in the case of high current, the plasma jet from the nozzle tends to form a new current path at the bottom of the gun. However, when the discharge current is fixed at 49.8 kA and the gas pressures range from 5 Pa to 40 Pa, the plasma motion velocity and transport distance are continuously reduced. Meanwhile, it is not found that new current paths are generated at the bottom of the coaxial gun under high pressure. The generation of the new current path is relevant to the channel impedance formed by more charged particles left at the bottom of the gun and neutral particles leaking from current sheet during discharge. Besides, a multiple discharge phenomenon is presented in experiment and the secondary discharge breakdown position occurs at the head of the electrode when the current is reversed to a positive value. Therefore, this study provides a reasonable choice of electrical parameters to obtain optimal plasma characteristics during the discharge of the coaxial gun.
      通信作者: 任春生, rchsh@dlut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFE0301206)资助的课题.
      Corresponding author: Ren Chun-Sheng, rchsh@dlut.edu.cn
    • Funds: Project supported by National Key R&D Program of China (Grant No. 2017YFE0301206).
    [1]

    Case A, Messer S, Brockington S, Wu L, Witherspoon F D, Elton R 2013 Phys. Plasmas 20 012704Google Scholar

    [2]

    Ticos C M, Wang Z, Wurden G A, Kline J L, Montgomery D S 2008 Phys. Plasmas 15 103701Google Scholar

    [3]

    Messer S, Case A, Bomgardner R, Phillips M, Witherspoon F D 2009 Phys. Plasmas 16 064502Google Scholar

    [4]

    Asai T, Itagaki H, Numasawa H, Terashima Y, Hirano Y, Hirose A 2010 Rev. Sci. Instrum. 81 10E119Google Scholar

    [5]

    Paganucci F, Zuin M, Agostini M, Andrenucci M, Antoni V, Bagatin M, Bonomo F, Cavazzana R, Franz P, Marrelli L, Martin P, Martines E, Rossetti P, Serianni G, Scarin P, Signori M, Spizzo G 2008 Plasma Phys. Contr. F. 50 124010Google Scholar

    [6]

    Poehlmann F, Gascon N, Thomas C, Cappelli N 2006 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Sacramento, USA, July 9−12, 2006 p5157

    [7]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232Google Scholar

    [8]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512Google Scholar

    [9]

    Kikuchi Y, Sakuma I, Iwamoto D, Kitagawa Y, Fukumoto N, Nagata M, Uedaet Y 2013 J. Nucl. Mater. 438 S715Google Scholar

    [10]

    Nagata M, Kikuchi Y, Fukumoto N 2009 IEE J. Trans. Electric. Electron. Eng. 4 518Google Scholar

    [11]

    Klimov N, Podkovyrov V, Zhitlukhin A, Kovalenko D, Linke J, Pintsuk G, Landman I, Pestchanyi S, Bazylev B, Janeschitz G, Loarte A, Merola M, Hirai T, Federici G, Riccardi B, Mazul I, Giniyatulin R, Khimchenko L, Koidan V 2011 J. Nucl. Mater. 415 S59Google Scholar

    [12]

    Parks P B 1988 Phys. Rev. Lett. 61 1364Google Scholar

    [13]

    Voronin A V, Gusev V K, Petrov Y V, Sakharov N V, Abramova K B, Sklyarova E M, Tolstyakov S Y 2005 Nucl. Fusion 45 1039Google Scholar

    [14]

    Voronin A V, Gusev V K, Petrov Y V, Mukhin E E, Tolstyakov S Y, Kurskiev G S, Kochergin M M, HellblomK G 2008 Nukleonika 53 103

    [15]

    Underwood T C, Loebner T K, Cappelli M A 2017 High Energ. Dens. Phys. 23 73Google Scholar

    [16]

    Butler T D, Henins I, Jahoda F C, Marshall J, Morse R L 1969 Phys. Fluids 12 1904Google Scholar

    [17]

    Hart P J 1964 J. Appl. Phys. 35 3425Google Scholar

    [18]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 物理学报 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [19]

    张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201Google Scholar

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar

    [20]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 物理学报 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [21]

    Pert G J 1968 J. Appl. Phys. 39 4215Google Scholar

    [22]

    Bruzzone H, Martínez J F 2001 Plasma Sources Sci. Technol. 10 471Google Scholar

    [23]

    Al-Hawat S 2004 IEEE T. Plasma Sci. 32 764Google Scholar

    [24]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 1 21Google Scholar

    [25]

    Mathuthu M, Zengeni T G, Gholap A V 1996 Phys. Plasmas 3 4572Google Scholar

    [26]

    杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 物理学报 66 055203Google Scholar

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar

    [27]

    Wiechula J, Hock C, Iberler M, Manegold T, Schönlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar

  • 图 1  实验装置与测量原理图

    Fig. 1.  Schematic of experimental setup and diagnosis measurement.

    图 2  电容器充电电压4 kV、氩气气压10 Pa的放电条件下电压、电流及磁场波形

    Fig. 2.  Waveforms of voltage, current and magnetic field on discharge condition that the charge voltage of capacitor is 4 kV, and the Ar gas pressure is 10 Pa.

    图 3  等离子体在喷出枪口25和125 mm处电压、电流及光电流波形

    Fig. 3.  Waveforms of voltage, current and photocurrent of the plasma when it jets 25 and 125 mm from the gun nozzle.

    图 4  放电电流69.8 kA、气压为10 Pa条件下电压、电流及磁场波形

    Fig. 4.  Oscillogram of the voltage, current and magnetic probe signals recorded at Z = 100 mm on condition that the discharge current is 69.8 kV, and the Ar gas pressure is 10 Pa.

    图 5  同轴枪在气压为10 Pa, 电压分别为(a) 3.5, (b) 4, (c) 6, (d) 7 kV放电条件下的电压、电流、磁场及光电流波形

    Fig. 5.  Waveforms of voltage, current, magnetic field and photocurrent for coaxial gun discharge at the pressure 10 Pa with different voltage (a) 3.5, (b) 4, (c) 6, (d) 7 kV.

    图 6  气压为10 Pa时不同放电电流下等离子体理论速度与实验速度对比

    Fig. 6.  Theoretical and experimental velocity of the plasma versus current at a pressure of 10 Pa.

    图 7  同轴枪在气压10 Pa、电流I = 39.2和69.8 kA条件下的放电照片

    Fig. 7.  Photographs for coaxial gun discharge with the pressure of 10 Pa at different current I = 39.2, 69.8 kA.

    图 8  同轴枪在电流49.8 kA, 气压分别为(a) 5, (b) 10, (c) 25, (d) 40 Pa放电条件下的电压、电流、磁场及光电流波形

    Fig. 8.  Waveforms of voltage, current, magnetic field and photocurrent for coaxial gun discharge at the current 49.8 kA with different pressure (a) 5, (b) 10, (c) 25, (d) 40 Pa.

    图 9  电流为49.8 kA, 不同气压下等离子体理论速度与实验速度对比

    Fig. 9.  Theoretical and experimental velocity of the plasma versus pressure at the discharge current of 49.8 kA.

    图 10  同轴枪在电流39.2 kA、气压P = 10和30 Pa条件下的放电照片

    Fig. 10.  Photographs for coaxial gun discharge with the current of 39.2 kA at different pressures P = 10, 30 Pa.

  • [1]

    Case A, Messer S, Brockington S, Wu L, Witherspoon F D, Elton R 2013 Phys. Plasmas 20 012704Google Scholar

    [2]

    Ticos C M, Wang Z, Wurden G A, Kline J L, Montgomery D S 2008 Phys. Plasmas 15 103701Google Scholar

    [3]

    Messer S, Case A, Bomgardner R, Phillips M, Witherspoon F D 2009 Phys. Plasmas 16 064502Google Scholar

    [4]

    Asai T, Itagaki H, Numasawa H, Terashima Y, Hirano Y, Hirose A 2010 Rev. Sci. Instrum. 81 10E119Google Scholar

    [5]

    Paganucci F, Zuin M, Agostini M, Andrenucci M, Antoni V, Bagatin M, Bonomo F, Cavazzana R, Franz P, Marrelli L, Martin P, Martines E, Rossetti P, Serianni G, Scarin P, Signori M, Spizzo G 2008 Plasma Phys. Contr. F. 50 124010Google Scholar

    [6]

    Poehlmann F, Gascon N, Thomas C, Cappelli N 2006 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Sacramento, USA, July 9−12, 2006 p5157

    [7]

    Kikuchi Y, Nakanishi R, Nakatsuka M, Fukumoto N, Nagata M 2010 IEEE Trans. Plasma Sci. 38 232Google Scholar

    [8]

    Matsumoto T, Sekiguchi J, Asai T, Gota H, Garate E, Allfrey I, Valentine T, Morehouse M, Roche T, Kinley J, Aefsky S, Cordero M, Waggoner W, Binderbauer M, Tajima T 2016 Rev. Sci. Instrum. 87 053512Google Scholar

    [9]

    Kikuchi Y, Sakuma I, Iwamoto D, Kitagawa Y, Fukumoto N, Nagata M, Uedaet Y 2013 J. Nucl. Mater. 438 S715Google Scholar

    [10]

    Nagata M, Kikuchi Y, Fukumoto N 2009 IEE J. Trans. Electric. Electron. Eng. 4 518Google Scholar

    [11]

    Klimov N, Podkovyrov V, Zhitlukhin A, Kovalenko D, Linke J, Pintsuk G, Landman I, Pestchanyi S, Bazylev B, Janeschitz G, Loarte A, Merola M, Hirai T, Federici G, Riccardi B, Mazul I, Giniyatulin R, Khimchenko L, Koidan V 2011 J. Nucl. Mater. 415 S59Google Scholar

    [12]

    Parks P B 1988 Phys. Rev. Lett. 61 1364Google Scholar

    [13]

    Voronin A V, Gusev V K, Petrov Y V, Sakharov N V, Abramova K B, Sklyarova E M, Tolstyakov S Y 2005 Nucl. Fusion 45 1039Google Scholar

    [14]

    Voronin A V, Gusev V K, Petrov Y V, Mukhin E E, Tolstyakov S Y, Kurskiev G S, Kochergin M M, HellblomK G 2008 Nukleonika 53 103

    [15]

    Underwood T C, Loebner T K, Cappelli M A 2017 High Energ. Dens. Phys. 23 73Google Scholar

    [16]

    Butler T D, Henins I, Jahoda F C, Marshall J, Morse R L 1969 Phys. Fluids 12 1904Google Scholar

    [17]

    Hart P J 1964 J. Appl. Phys. 35 3425Google Scholar

    [18]

    高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟 2012 物理学报 61 145201Google Scholar

    Gao Z X, Feng C H, Yang X Z, Huang J G, Han J W 2012 Acta Phys. Sin. 61 145201Google Scholar

    [19]

    张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201Google Scholar

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar

    [20]

    刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均 2018 物理学报 67 065201Google Scholar

    Liu S, Huang Y Z, Guo H S, Zhang Y P, Yang L J 2018 Acta Phys. Sin. 67 065201Google Scholar

    [21]

    Pert G J 1968 J. Appl. Phys. 39 4215Google Scholar

    [22]

    Bruzzone H, Martínez J F 2001 Plasma Sources Sci. Technol. 10 471Google Scholar

    [23]

    Al-Hawat S 2004 IEEE T. Plasma Sci. 32 764Google Scholar

    [24]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 1 21Google Scholar

    [25]

    Mathuthu M, Zengeni T G, Gholap A V 1996 Phys. Plasmas 3 4572Google Scholar

    [26]

    杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生 2017 物理学报 66 055203Google Scholar

    Yang L, Zhang J L, Yan H J, Hua Y, Ren C S 2017 Acta Phys. Sin. 66 055203Google Scholar

    [27]

    Wiechula J, Hock C, Iberler M, Manegold T, Schönlein A, Jacoby J 2015 Phys. Plasmas 22 043516Google Scholar

  • [1] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性. 物理学报, 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] 赵新丽, 马国亮, 马余刚. 中高能重离子碰撞中的电磁场效应和手征反常现象. 物理学报, 2023, 72(11): 112502. doi: 10.7498/aps.72.20230245
    [3] 霍冠忠, 苏超, 王可, 叶晴莹, 庄彬, 陈水源, 黄志高. 铁酸铋薄膜光电流的磁场调制研究. 物理学报, 2023, 72(6): 067501. doi: 10.7498/aps.72.20222053
    [4] 张津硕, 孙辉, 杜志杰, 张雪航, 肖青梅, 范金蕤, 闫慧杰, 宋健. 预填充模式下同轴枪放电等离子体加速模型分析与优化. 物理学报, 2023, 72(15): 155202. doi: 10.7498/aps.72.20230463
    [5] 宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真. 外电极长度对同轴枪放电等离子体特性的影响. 物理学报, 2021, 70(10): 105201. doi: 10.7498/aps.70.20201724
    [6] 赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响. 物理学报, 2021, 70(20): 205202. doi: 10.7498/aps.70.20210709
    [7] 崔翔. 电流连续的细导体段模型的磁场及电感. 物理学报, 2020, 69(3): 034101. doi: 10.7498/aps.69.20191212
    [8] 余鑫, 漆亮文, 赵崇霄, 任春生. 同轴枪正、负脉冲放电等离子体特性的对比. 物理学报, 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [9] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响. 物理学报, 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [10] 杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生. 同轴枪脉冲放电等离子体输运过程中密度变化的实验研究. 物理学报, 2017, 66(5): 055203. doi: 10.7498/aps.66.055203
    [11] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生. 放电参数对同轴枪中等离子体团的分离的影响. 物理学报, 2015, 64(7): 075201. doi: 10.7498/aps.64.075201
    [12] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究. 物理学报, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [13] 唐田田, 张朝民, 张敏. 氢负离子在磁场和金属面附近电子通量分布的研究. 物理学报, 2013, 62(12): 123201. doi: 10.7498/aps.62.123201
    [14] 唐田田, 王德华, 黄凯云, 王姗姗. 氢负离子在磁场和电介质表面附近光剥离的研究. 物理学报, 2012, 61(6): 063202. doi: 10.7498/aps.61.063202
    [15] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究. 物理学报, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [16] 邹秀, 籍延坤, 邹滨雁. 斜磁场中碰撞等离子体鞘层的玻姆判据. 物理学报, 2010, 59(3): 1902-1906. doi: 10.7498/aps.59.1902
    [17] 邹秀, 邹滨雁, 刘惠平. 外加磁场对碰撞射频鞘层离子能量分布的影响. 物理学报, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [18] 邹 秀, 刘惠平, 谷秀娥. 磁化等离子体的鞘层结构. 物理学报, 2008, 57(8): 5111-5116. doi: 10.7498/aps.57.5111
    [19] 邹 秀, 刘金远, 王正汹, 宫 野, 刘 悦, 王晓钢. 磁场中等离子体鞘层的结构. 物理学报, 2004, 53(10): 3409-3412. doi: 10.7498/aps.53.3409
    [20] 欧阳世根, 关毅, 佘卫龙. 旋转超导体中的电流与电磁场. 物理学报, 2002, 51(7): 1596-1599. doi: 10.7498/aps.51.1596
计量
  • 文章访问数:  8228
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-10
  • 修回日期:  2018-12-15
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回