搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外电极长度对同轴枪放电等离子体特性的影响

宋健 李嘉雯 白晓东 张津硕 闫慧杰 肖青梅 王德真

引用本文:
Citation:

外电极长度对同轴枪放电等离子体特性的影响

宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真

Effect of length of outer electrode on plasma characteristics in coaxial gun

Song Jian, Li Jia-Wen, Bai Xiao-Dong, Zhang Jin-Shuo, Yan Hui-Jie, Xiao Qing-Mei, Wang De-Zhen
PDF
HTML
导出引用
  • 同轴枪放电装置能够产生高速度(~100 km/s)、高电子密度(~1016 cm–3)以及高能量密度(~1 MJ/m2)的稠密等离子体, 因而在聚变能、天体物理及航空航天等领域得到了广泛关注. 通过光电信号的测量以及对输运过程中等离子体时空演化过程的观察, 本文主要对比分析了不同长度外电极下的同轴枪放电等离子体特性. 外电极长度的增加, 带来了喷射等离子体电子密度、发光强度的降低以及轴向速度、准直性与输运距离的显著提高, 而由箍缩效应所形成的等离子体柱在放电过程中对中心电极的延长作用则是引起长短外电极同轴枪中等离子体参数差异的主要原因. 延长的中心电极一方面与长外电极在轴向长度上得以匹配, 使等离子体在枪内能够获得更长的加速时间, 进而提高其喷射速度; 另一方面则会造成带电粒子的大量损耗以及更高的碰撞复合损失, 导致等离子体电子密度与发光强度的降低. 等离子体的轴向动能直接影响着其喷出后的传播距离, 而喷口处等离子体的扩散角则主要受电子密度与径向洛伦兹力的约束, 二者共同决定了等离子体的准直性及输运衰减特性.
    The dense plasma produced by a coaxial gun possesses an extremely high velocity (~100 km/s), electron density (~1016 cm–3) and energy density (~1 MJ/m2), which has great potential applications in fusion energy, astrophysics and aerospace physics. Through the measurements of electrical and optical signals, as well as the temporal and spatial evolution of the ejected plasma, the plasma characteristics of two different outer electrodes in length are investigated. As the outer electrode is lengthened, the axial velocity, the collimation and the propagation distance of plasma are all enhanced while the electron density and the optical intensity decrease, this can be ascribed to the extension of plasma column formed by Z-pinch on the central electrode during the discharge. When moving across the end of the inner electrode, the plasma sheet can be stretched into a bow shape due to the Coulomb and Lorentz force. With the appearance of axial current, part of the plasma sheet near the head of the inner electrode converges toward the center, and then generates a plasma column with much higher electron density and temperature. On the one hand, the extending of the plasma column can match the outer electrode in length and therefore the plasma column gains longer accelerating time in the coaxial gun resulting in the growing of ejected velocity. On the other hand, it also brings higher losses of the charged particles and recombination rates between the plasma and the wall of electrodes, resulting in the decrease of electron density and optical intensity. Moreover, the axial kinetic energy, the electron density and the radial Lorentz force of ejected plasma are jointly responsible for the collimation and the attenuation characteristics in its propagation. As the axial velocity and electron density increase, the axial kinetic energy of ejected plasma increases, which induces a longer propagating distance. In contrast, with the electron density and radial Lorentz force growing, the density gradient and thermal expansion of ejected plasma are enhanced correspondingly, leading the energy density to decrease and finally the propagating distance to shorten. In conclusion, a high collimation plasma jet trends to generate in a high axial velocity, electron density and with a relatively long outer electrode.
      通信作者: 宋健, songjian@dlut.edu.cn ; 肖青梅, qmxiao@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51807020)、国家重点研发计划(批准号: 2017YFE0301206)和中央高校基本科研业务费(批准号: DUT20RC(4)008)资助的课题
      Corresponding author: Song Jian, songjian@dlut.edu.cn ; Xiao Qing-Mei, qmxiao@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51807020), the National Key R&D Program of China (Grant No. 2017YFE0301206), and the Fundamental Research Funds for the Central University of Ministry of Education of China (Grant No. DUT20RC(4)008)
    [1]

    Marshall J 1960 Phys. Fluids 3 134

    [2]

    Hagerman D C, Osher J E 1963 Rev. Sci. Instrum. 34 56Google Scholar

    [3]

    Subramaniam V, Raja L L 2017 Phys. Plasmas 24 062507Google Scholar

    [4]

    Cheng D Y 1971 AIAA J. 9 1681Google Scholar

    [5]

    Cassibry J T, Thio Y C F, Markusic T E, Wu S T 2006 J. Propul. Power 22 628Google Scholar

    [6]

    Wang M Y, Choi C K, Mead F B 1992 9th Symp on Space Nuclear Power Systems Albuquerque NM, January 12–16, 1992 p30

    [7]

    Bellan P M, You S, Hsu S C 2005 Astrophys. Space Sci. 298 203Google Scholar

    [8]

    Bellan P M 2005 Phys. Plasmas 12 058301Google Scholar

    [9]

    Golingo R P, Shumlak U, Nelson B A 2005 Phys. Plasmas 12 062505Google Scholar

    [10]

    Ticos C M, Wang Z H, Wurden G A, Kline J L, Montgomery D S 2008 Phys. plasmas 15 103701Google Scholar

    [11]

    Parks P B 1988 Phys. Rev. Lett. 61 1364Google Scholar

    [12]

    Underwood T C, Loebner K T, Cappelli A 2017 High Energy Density Phys. 23 73Google Scholar

    [13]

    Hart P J 1962 Phys. Fluids. 5 38Google Scholar

    [14]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 8 21Google Scholar

    [15]

    Cheng D Y 1970 Nucl. Fusion 10 305Google Scholar

    [16]

    Witherspoon F D, Case A, Messer S J, Bomgardner R, Phillips W, Brockington S, Elton R 2009 Rev. Sci. Instrum. 80 083506Google Scholar

    [17]

    Hart P J 1964 J. Appl. Phys. 35 3425Google Scholar

    [18]

    Milanese M M, Niedbalski J, Moroso R L 2007 IEEE Trans. Plasma Sci. 35 808Google Scholar

    [19]

    Lie T N, Rhee M J, Chang C C 1967 AIAA 67 1

    [20]

    Michels C J, Ramins P 1964 Phys. Fluids 7 71Google Scholar

    [21]

    张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201Google Scholar

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar

    [22]

    Gloersen P, Gorowitz B 1966 AIAA J. 4 436Google Scholar

    [23]

    Hsu S C, Awe T J, Brockington S, Case A, Cassibry J T, Kagan G, Messer S J, Stanic M, Tang X, Welch D R, Witherspoon F D 2012 IEEE Trans. Plasma Sci. 40 1287Google Scholar

    [24]

    余鑫, 漆亮文, 赵崇霄, 任春生 2020 物理学报 69 035202Google Scholar

    Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202Google Scholar

    [25]

    赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 105203Google Scholar

    Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar

    [26]

    漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 035203Google Scholar

    Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar

    [27]

    Berkery J W, Choueiri E Y 2006 Plasma Sources Sci. Technol. 15 64Google Scholar

    [28]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 1 21

    [29]

    Chen Y H, Lee S 1973 Int. J. Electron. 35 341Google Scholar

    [30]

    Lie T N, Ali A W, Mclean E A, Kolb A C 1967 Phys. Fluids 10 1545Google Scholar

    [31]

    Markusic T E, Thio Y C F 2002 38th AIAA Joint Propulsion Conference Indianapolis, Indiana, July 7–10, 2002 p1

  • 图 1  实验装置图

    Fig. 1.  Schematic diagram of experimental equipment.

    图 2  不同长度外电极同轴枪在充电电压为5 kV, 气压为10 Pa放电条件下的电压、电流以及光电流波形 (a) 短外电极; (b) 长外电极

    Fig. 2.  Typical electrical and optical signals of discharge in a coaxial gun with (a) short and (b) long external electrode. V = 5 kV and P = 10 Pa.

    图 3  气压10 Pa时, 同轴枪放电等离子体速度随充电电压的变化

    Fig. 3.  The variation of plasma velocity with the charging voltage of the coaxial gun at 10 Pa.

    图 4  高速相机拍摄的同轴枪放电等离子体图像, 充电电压5 kV, 气压10 Pa, 曝光时间为5 μs (a) 短外电极; (b) 长外电极

    Fig. 4.  High-speed camera photographs of discharge in a coaxial gun with (a) short and (b) long outer electrode. V = 5 kV, P = 10 Pa, the exposure time is 5 μs.

    图 5  短外电极同轴枪放电中的等离子体片发展过程

    Fig. 5.  Development of plasma sheet during discharge in a coaxial gun with short outer electrode.

    图 6  长外电极同轴枪放电中的等离子体片发展过程

    Fig. 6.  Development of plasma sheet during discharge in a coaxial gun with long outer electrode.

    图 7  同轴枪在气压为10 Pa的放电条件下, 电子密度随充电电压的变化

    Fig. 7.  The variation of electron density with the charging voltage of the coaxial gun at 10 Pa.

    图 8  数码相机拍摄的不同外电极长度条件下的放电照片 (a) 短外电极; (b) 长外电极. 气压为10 Pa, 充电电压为7 kV, 曝光时间为1 s

    Fig. 8.  Digital camera photographs of discharge in a coaxial gun with (a) short and (b) long outer electrode. P = 10 Pa, V = 7 kV, the exposure time is 1 s.

    图 9  同轴枪在气压为10 Pa的放电条件下, 扩散角随充电电压的变化

    Fig. 9.  The variation of diffusion angles with the charging voltage of the coaxial gun at 10 Pa.

  • [1]

    Marshall J 1960 Phys. Fluids 3 134

    [2]

    Hagerman D C, Osher J E 1963 Rev. Sci. Instrum. 34 56Google Scholar

    [3]

    Subramaniam V, Raja L L 2017 Phys. Plasmas 24 062507Google Scholar

    [4]

    Cheng D Y 1971 AIAA J. 9 1681Google Scholar

    [5]

    Cassibry J T, Thio Y C F, Markusic T E, Wu S T 2006 J. Propul. Power 22 628Google Scholar

    [6]

    Wang M Y, Choi C K, Mead F B 1992 9th Symp on Space Nuclear Power Systems Albuquerque NM, January 12–16, 1992 p30

    [7]

    Bellan P M, You S, Hsu S C 2005 Astrophys. Space Sci. 298 203Google Scholar

    [8]

    Bellan P M 2005 Phys. Plasmas 12 058301Google Scholar

    [9]

    Golingo R P, Shumlak U, Nelson B A 2005 Phys. Plasmas 12 062505Google Scholar

    [10]

    Ticos C M, Wang Z H, Wurden G A, Kline J L, Montgomery D S 2008 Phys. plasmas 15 103701Google Scholar

    [11]

    Parks P B 1988 Phys. Rev. Lett. 61 1364Google Scholar

    [12]

    Underwood T C, Loebner K T, Cappelli A 2017 High Energy Density Phys. 23 73Google Scholar

    [13]

    Hart P J 1962 Phys. Fluids. 5 38Google Scholar

    [14]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 8 21Google Scholar

    [15]

    Cheng D Y 1970 Nucl. Fusion 10 305Google Scholar

    [16]

    Witherspoon F D, Case A, Messer S J, Bomgardner R, Phillips W, Brockington S, Elton R 2009 Rev. Sci. Instrum. 80 083506Google Scholar

    [17]

    Hart P J 1964 J. Appl. Phys. 35 3425Google Scholar

    [18]

    Milanese M M, Niedbalski J, Moroso R L 2007 IEEE Trans. Plasma Sci. 35 808Google Scholar

    [19]

    Lie T N, Rhee M J, Chang C C 1967 AIAA 67 1

    [20]

    Michels C J, Ramins P 1964 Phys. Fluids 7 71Google Scholar

    [21]

    张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生 2015 物理学报 64 075201Google Scholar

    Zhang J L, Yang L, Yan H J, Hua Y, Ren C S 2015 Acta Phys. Sin. 64 075201Google Scholar

    [22]

    Gloersen P, Gorowitz B 1966 AIAA J. 4 436Google Scholar

    [23]

    Hsu S C, Awe T J, Brockington S, Case A, Cassibry J T, Kagan G, Messer S J, Stanic M, Tang X, Welch D R, Witherspoon F D 2012 IEEE Trans. Plasma Sci. 40 1287Google Scholar

    [24]

    余鑫, 漆亮文, 赵崇霄, 任春生 2020 物理学报 69 035202Google Scholar

    Yu X, Qi L W, Zhao C X, Ren C S 2020 Acta Phys. Sin. 69 035202Google Scholar

    [25]

    赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 105203Google Scholar

    Zhao C X, Qi L W, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 105203Google Scholar

    [26]

    漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生 2019 物理学报 68 035203Google Scholar

    Qi L W, Zhao C X, Yan H J, Wang T T, Ren C S 2019 Acta Phys. Sin. 68 035203Google Scholar

    [27]

    Berkery J W, Choueiri E Y 2006 Plasma Sources Sci. Technol. 15 64Google Scholar

    [28]

    Chow S P, Lee S, Tan B C 1972 J. Plasma Phys. 1 21

    [29]

    Chen Y H, Lee S 1973 Int. J. Electron. 35 341Google Scholar

    [30]

    Lie T N, Ali A W, Mclean E A, Kolb A C 1967 Phys. Fluids 10 1545Google Scholar

    [31]

    Markusic T E, Thio Y C F 2002 38th AIAA Joint Propulsion Conference Indianapolis, Indiana, July 7–10, 2002 p1

  • [1] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性. 物理学报, 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] 张津硕, 孙辉, 杜志杰, 张雪航, 肖青梅, 范金蕤, 闫慧杰, 宋健. 预填充模式下同轴枪放电等离子体加速模型分析与优化. 物理学报, 2023, 72(15): 155202. doi: 10.7498/aps.72.20230463
    [3] 赵繁涛, 宋健, 张津硕, 漆亮文, 赵崇霄, 王德真. 磁化同轴枪操作参数对球马克产生及等离子体特性的影响. 物理学报, 2021, 70(20): 205202. doi: 10.7498/aps.70.20210709
    [4] 余鑫, 漆亮文, 赵崇霄, 任春生. 同轴枪正、负脉冲放电等离子体特性的对比. 物理学报, 2020, 69(3): 035202. doi: 10.7498/aps.69.20191321
    [5] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响. 物理学报, 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [6] 漆亮文, 赵崇霄, 闫慧杰, 王婷婷, 任春生. 同轴枪放电等离子体电流片的运动特性研究. 物理学报, 2019, 68(3): 035203. doi: 10.7498/aps.68.20181832
    [7] 杨亮, 张俊龙, 闫慧杰, 滑跃, 任春生. 同轴枪脉冲放电等离子体输运过程中密度变化的实验研究. 物理学报, 2017, 66(5): 055203. doi: 10.7498/aps.66.055203
    [8] 张俊龙, 杨亮, 闫慧杰, 滑跃, 任春生. 放电参数对同轴枪中等离子体团的分离的影响. 物理学报, 2015, 64(7): 075201. doi: 10.7498/aps.64.075201
    [9] 丰志兴, 宁成, 薛创, 李百文. 基于等离子体粒子模拟的喷气Z箍缩过程物理研究. 物理学报, 2014, 63(18): 185203. doi: 10.7498/aps.63.185203
    [10] 李雪辰, 常媛媛, 刘润甫, 赵欢欢, 狄聪. 较大体积的大气压空气介质阻挡放电特性研究. 物理学报, 2013, 62(16): 165205. doi: 10.7498/aps.62.165205
    [11] 周林, 薛飞彪, 司粉妮, 杨建伦, 叶凡, 徐荣昆, 胡青元, 甫跃成, 蒋树庆, 李林波, 陈进川, 徐泽平. Z箍缩等离子体电流分布实验研究. 物理学报, 2012, 61(19): 195207. doi: 10.7498/aps.61.195207
    [12] 高启, 吴泽清, 张传飞, 李正宏, 徐荣昆, 祖小涛. Z箍缩Al等离子体发射谱的非局域平衡模拟. 物理学报, 2012, 61(1): 015201. doi: 10.7498/aps.61.015201
    [13] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究. 物理学报, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [14] 吴刚, 邱爱慈, 王亮平, 吕敏, 邱孟通, 丛培天. 双层喷气Z箍缩氖等离子体K层辐射研究. 物理学报, 2011, 60(1): 015203. doi: 10.7498/aps.60.015203
    [15] 罗牧华, 张秋菊, 闫春燕. 超相对论激光和稠密等离子体作用产生阿秒脉冲的优化. 物理学报, 2010, 59(12): 8559-8565. doi: 10.7498/aps.59.8559
    [16] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究. 物理学报, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [17] 叶 凡, 薛飞彪, 郭 存, 李正宏, 杨建伦, 徐荣昆, 章法强, 金永杰. 利用凸晶摄谱仪获取Z箍缩等离子体X辐射单色图像. 物理学报, 2008, 57(3): 1792-1795. doi: 10.7498/aps.57.1792
    [18] 张 扬, 丁 宁. 轴向流对Z箍缩等离子体稳定性的影响. 物理学报, 2006, 55(5): 2333-2339. doi: 10.7498/aps.55.2333
    [19] 邱爱慈, 蒯 斌, 曾正中, 王文生, 邱孟通, 王亮平, 丛培天, 吕 敏. “强光一号”钨丝阵Z箍缩等离子体辐射特性研究. 物理学报, 2006, 55(11): 5917-5922. doi: 10.7498/aps.55.5917
    [20] 李玉同, 张 杰, 陈黎明, 夏江帆, 腾 浩, 魏志义, 江文勉. 对飞秒激光等离子体相互作用中横向箍缩的观察. 物理学报, 2000, 49(7): 1400-1403. doi: 10.7498/aps.49.1400
计量
  • 文章访问数:  4837
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-16
  • 修回日期:  2021-01-22
  • 上网日期:  2021-05-06
  • 刊出日期:  2021-05-20

/

返回文章
返回