搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多壁碳纳米管与金属表面间接触行为的分子动力学模拟

杨权 马立 耿松超 林旖旎 陈涛 孙立宁

引用本文:
Citation:

多壁碳纳米管与金属表面间接触行为的分子动力学模拟

杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁

Molecular dynamics simulation of contact behaviors between multiwall carbon nanotube and metal surface

Yang Quan, Ma Li, Geng Song-Chao, Lin Yi-Ni, Chen Tao, Sun Li-Ning
PDF
HTML
导出引用
  • 碳纳米管与金属表面间的界面接触行为对碳基电子器件的性能研究具有重要意义. 本文利用分子动力学模拟方法研究了端部开口和闭口的多壁碳纳米管与金属表面间的界面接触构型和粘着强度. 模拟结果表明, 多壁碳纳米管在金属表面上的位置和形状变化是因为减少的范德瓦耳斯能转变成碳纳米管的内能; 多壁碳纳米管与金属表面的结合能为负值, 表明两者存在粘着作用; 多壁碳纳米管水平地接触金属表面时的粘着强度受初始间距、接触长度和金属种类影响, 即范德瓦耳斯能作用的初始间距阈值约为1 nm且最终平衡状态时的两者间距约为0.3 nm; 随着两者接触长度增加, 粘着强度增大, 铂与碳纳米管的粘着强度比钨和铝的大; 端部开口和闭口的碳纳米管与金属表面垂直接触时的粘着强度都比水平接触时的小, 两端开口的碳纳米管在金属表面上发生径向压缩变形, 最终形成带状结构; 而两端封闭的碳纳米管在金属表面上发生轴向压缩变形; 在碳纳米管场效应晶体管中, 两端开口的多壁碳纳米管与单壁碳纳米管一样变形成带状结构, 并且各个管壁之间以及最外层管壁与金属电极之间的间距相当, 该原子尺度的间距(约0.34 nm)保证电子从金属隧穿到最外层管壁, 并在内层管壁之间径向迁移.
    The interfacial contact configuration and contact intensity between carbon nanotube and metal surface play an important role in the electrical performance of carbon nanotube field effect transistors and nanoscale carbon nanotube robotic manipulation. In this paper, we investigate numerically the contact configuration and the contact intensity between multiwall carbon nanotube with open ends or capped ends and various metal surfaces in carbon nanotube field effect transistor assembly by the molecular dynamics simulation. The simulation results show that the change in the position and shape of multiwall carbon nanotube on the metal surface are mainly due to the decrease of van der Waals energy reduction: the decrement of van der Waals energy is converted into the internal energy and kinetic energy of carbon nanotubes. Moreover, the binding energy between multiwall carbon nanotube and metal surface is negative, which indicates that multiwall carbon nanotube adheres to the metal surface. In addition, the contact intensity of multiwall carbon nanotube in horizontally contacting metal surface is influenced by initial distance, contact length and metal materials. The final equilibrium distance is around ~0.3 nm when the initial distance is less than ~1 nm. And the contact intensity increases with the augment of contact length between carbon nanotube and metal. The contact intensity between platinum and carbon nanotube is larger than that between tungsten and aluminum, therefore, platinum-coated probe is generally utilized for picking carbon nanotube up. The contact intensity of the carbon nanotubes with the open ends and closed ends in the vertical contact with the metal surface are both lower than those in the horizontal contact. The interfacial contact configuration of carbon nanotube and metal materials mainly include the displacement and geometric deformation of carbon nanotube. The displacement and geometric deformation of multiwall carbon nanotube with open ends on the metal surface finally result in its radial nanoscale ribbon structure. But the closed-end three-wall carbon nanotube has the small axial geometric deformation through comparing the concentration profiles between the initial carbon nanotube and the collapsed carbon nanotube. In a carbon nanotube field effect transistor, the collapsed multiwall carbon nanotube forms the ribbon structure like a single wall carbon nanotube. And the distance between carbon nanotube walls and between the outermost carbon nanotube wall and the metal electrode are both about ~0.34 nm. The atomic scale spacing ensures that electrons tunnel from the metal to the outermost carbon nanotube wall and migrate radially between the inner carbon nanotube walls.
      通信作者: 马立, malian@shu.edu.cn ; 陈涛, chent@suda.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB1309200)和国家自然科学基金(批准号: 61573238)资助的课题
      Corresponding author: Ma Li, malian@shu.edu.cn ; Chen Tao, chent@suda.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB1309200) and the National Natural Science Foundation of China (Grant No. 61573238)
    [1]

    Yu M F, Dyer M J, Skidmore G D, Rohrs H W, Lu X, Ausman K D, Ehr J R V, Ruoff R S 1999 Nanotechnology 10 244Google Scholar

    [2]

    Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F, S. R R 2000 Science 287 637Google Scholar

    [3]

    Ding H Y, Shi C Y, Li M, Zhan Y, Wang M Y, Wang Y Q, Tao C, Sun L N, Fukuda T 2018 Sensors 18 1137Google Scholar

    [4]

    王亚洲, 马立, 杨权, 耿松超, 林旖旎, 陈涛, 孙立宁 2020 物理学报 69 068801Google Scholar

    Wang Y Z, Ma L, Yang Q, Geng S C, Lin Y N, Chen T, Sun L N 2020 Acta Phys. Sin. 69 068801Google Scholar

    [5]

    Zhang Z Y, Wang S, Ding L, Liang X L, Xu H L, Shen J, Chen Q, Cui R L, Li Y, Peng L M 2008 Appl. Phys. Lett. 92 133117Google Scholar

    [6]

    Xie S, Jiao N, Tung S, Liu L 2015 Micromachines 6 1317Google Scholar

    [7]

    Yu N, Shi Q, Nakajima M, Wang H P, Yang Z, Sun L N, Huang Q, Fukuda T 2017 J. Micromech. Microeng. 27 105007Google Scholar

    [8]

    Fukuda T, Arai F, Dong L 2003 Proc. IEEE 91 1803

    [9]

    Yang Z, Chen T, Wang Y Q, Sun L N, Fukuda T 2016 Micro-Nano Lett. 11 645Google Scholar

    [10]

    杨权, 马立, 杨斌, 丁汇洋, 陈涛, 杨湛, 孙立宁, 福田敏男 2018 物理学报 67 136801Google Scholar

    Yang Q, Ma L, Yang B, Ding H Y, Chen T, Yang Z, Sun L N, Toshio F 2018 Acta Phys. Sin. 67 136801Google Scholar

    [11]

    Liu P, Nakajima M, Yang Z, Fukuda T, Arai F 2009 Proc. IMechE Part N: J. Nanoengineering and Nanosystems 222 33

    [12]

    Yu N, Nakajima M, Shi Q, Yang Z, Wang H P, Sun L N, Huang Q, Fukuda T 2017 Scanning 2017 5910734

    [13]

    Shi Q, Yang Z, Guo Y N, Wang H P, Sun L N, Huang Q, Fukuda T 2017 IEEE/ASME Trans. Mechatron. 22 845Google Scholar

    [14]

    Chen Q, Wang S, Peng L M 2006 Nanotechnology 17 1087Google Scholar

    [15]

    Martel R, Schmidt T, Shea H R, Hertel T, Avouris P 1998 Appl. Phys. Lett. 73 2447Google Scholar

    [16]

    Cui J L, Zhang J W, He X Q, Mei X S, Wang W J, Yang X J, Xie H, Yang L J, Wang Y 2017 J. Nanopart. Res. 19 110Google Scholar

    [17]

    Gao G H, Çagin T, Goddard W A 1998 Nanotechnology 9 184Google Scholar

    [18]

    Yu M F, Dyer M J, Ruoff R S 2001 J. Appl. Phys. 89 4554Google Scholar

    [19]

    Liu B, Yu M F, Huang Y G 2004 Phys. Rev. B 70 2806

    [20]

    Xiao J, Liu B, Huang Y, Zuo J, Hwang K C, Yu M F 2007 Nanotechnology 18 395703Google Scholar

    [21]

    Xiao S G, Liu S L, Song M M, Ang N, Zhang H L 2020 Multibody Sys. Dyn. 48 451Google Scholar

    [22]

    Xiao S G, Liu S L, Wang H Z, Lin Y, Song M M, Zhang H L 2020 Nonlinear Dyn. 100 1203Google Scholar

    [23]

    Zhang D H, Liu Z K, Yang H B, Liu A M 2018 Mol. Simul. 44 648Google Scholar

    [24]

    Zhang D H, Yang H B, Liu Z K, Liu A M 2018 J. Alloys Compd. 765 140Google Scholar

    [25]

    Andriotis A, Menon M, Gibson H 2008 IEEE Sens. J. 8 910Google Scholar

    [26]

    Cui J L, Zhang J W, Wang X W, Theogene B, Wang W J, Tohmyoh H, He X Q, Mei X S 2019 J. Phys. Chem. C 123 19693Google Scholar

    [27]

    Cui J L, Ren X Y, Mei H H, Wang X W, Zhang J W, Fan Z J, Wang W J, Tohmyoh H, Mei X S 2020 Appl. Surf. Sci. 512 145696Google Scholar

    [28]

    Xie J, Xue Q, Yan K, Chen H, Xia D, Dong M 2009 J. Phys. Chem. C 113 14747

    [29]

    Yan K Y, Xue Q Z, Xia D, Chen H J, Xie J, Dong M D 2009 ACS Nano 3 2235Google Scholar

    [30]

    Yan K Y, Xue Q Z, Zheng Q B, Xia D, Xie J 2009 J. Phys. Chem. C 113 3120Google Scholar

    [31]

    Ling C C, Xue Q Z, Jing N N, Xia D 2012 RSC Adv. 2 7549Google Scholar

    [32]

    Mozos J, Ordejón P, Brandbyge M, Taylor J, Stokbro K 2003 Advances in Quantum Chemistry (Salt Lake City: Academic Press) pp299−314

    [33]

    Chen W, Li H, He Y Z 2014 Phys. Chem. Chem. Phys. 16 7907Google Scholar

    [34]

    李瑞, 密俊霞 2017 物理学报 66 046101Google Scholar

    Li R, Mi J X 2017 Acta Phys. Sin. 66 046101Google Scholar

    [35]

    Akita S, Nishijima H, Nakayama Y 2000 J. Phys. D: Appl. Phys. 33 2673Google Scholar

    [36]

    Yang Q 2020 Micro-Nano Lett. 15 883Google Scholar

    [37]

    Maiti A, Ricca A 2004 Chem. Phys. Lett. 395 7Google Scholar

    [38]

    Frank S P, Poncharal P, Wang Z L, Heer W A D 1998 Science 280 1744Google Scholar

    [39]

    Xiang L, Wang Y W, Zhang P P, Fong X Y, Wei X L, Hu Y F 2018 Nanoscale 10 21857Google Scholar

    [40]

    Xiao M M, Lin Y X, Xu L, Deng B, Peng H L, Peng L M, Zhang Z Y 2020 Adv. Electron. Mater. 6 2000258Google Scholar

    [41]

    Zhang Z Y, Liang X L, Wang S, Yao K, Hu Y F, Zhu Y Z, Chen Q, Zhou W W, Li Y, Yao Y G, Zhang J, Peng L M 2007 Nano Lett. 7 3603Google Scholar

    [42]

    Park C J, Kim Y H, Chang K J 1999 Phys. Rev. B 60 10656Google Scholar

    [43]

    Lu J Q, Wu J, Duan W H, Liu F, Zhu B F, Gu B L 2003 Phys. Rev. Lett. 90 156601Google Scholar

    [44]

    Lu J Q, Wu J, Duan W H, Gu B L, Johnson H T 2005 J. Appl. Phys. 97 56

    [45]

    Giusca C E, Tison Y, Silva S R P 2008 Nano Lett. 8 3350Google Scholar

  • 图 1  多壁碳管及其分子动力学模型 (a) 碳纳米管和AFM悬臂梁的SEM图像; (b) 原子模型侧视图; (c) 主视图; (d) 范德瓦耳斯能差值

    Fig. 1.  Picked CNT and its molecular dynamic model; (a) SEM images of CNT and AFM cantilever; (b) side view; (c) front view; (d) vdW energy reduction.

    图 2  碳纳米管与金界面的能量变化 (a)总能; (b)势能; (c)内能; (d)动能

    Fig. 2.  Energy changing at the interface of CNT and gold durface: (a) Total energy; (b) potential energy; (c) internal energy; (d) kinetic energy.

    图 3  碳纳米管与金属表面的接触模式 (a)水平接触; (b)垂直接触

    Fig. 3.  Contact model between CNT and metal surface: (a) Horizontal contact; (b) vertical contact.

    图 4  碳纳米管与金表面在不同初始间距下的界面接触构型及范德瓦耳斯能差 初始间距: (a) 1.1999 nm; (b) 0.9489 nm; (c) 0.1378 nm; 平衡间距: (d) 1.16 nm; (e) 0.3081 nm; (f) 0.2933 nm; 范德瓦耳斯能差: (g) 1.1999 nm; (b) 0.9489 nm; (c) 0.1378 nm

    Fig. 4.  Contact configuration and Van der Waals energy of CNT with different initial gap: (a) Initial separate gap of 1.1999 nm; (b) 0.9489 nm; (c) 0.1378 nm; (d) final gap of 1.16 nm; (e) 0.3081 nm; (f) 0.2933 nm; Van der Waals energy at distance of (g) 1.1999 nm; (b) 0.9489 nm; (c) 0.1378 nm.

    图 5  碳纳米管与不同金属间的界面接触构型和范德瓦耳斯能差值. 接触构型: (a) 铂; (c) 铝; (e)钨; 范德瓦耳斯能差值: (d) 铂; (e) 铝; (f) 钨

    Fig. 5.  Contact behavior and VdW energy reduction of three-walled CNT on different metal: (a) Pt; (c) Al; (c) W; VdW energy reduction contacting with different metal: (d) Pt; (e) Al; (f) W.

    图 6  碳纳米管与金在不同接触长度下的接触构型和范德瓦耳斯能差值. 接触构型: (a) 2.46 nm; (b) 3.689 nm; (c) 4.919 nm; 范德瓦耳斯能差值: (d) 2.46 nm; (e) 3.689 nm; (f) 4.919 nm

    Fig. 6.  Contact behavior and VdW energy reduction with different contact length. Contact behavior: (a) 2.46 nm; (b) 3.689 nm; (c) 4.919 nm; and VdW energy reduction under contact length: (d) 2.46 nm; (e) 3.689 nm; (f) 4.919 nm.

    图 7  碳纳米管与金表面垂直接触下的接触构型和范德瓦耳斯能差值  接触构型:(a) 两端开口; (b) 一端开口和闭口; (c) 两端闭口; 范德瓦耳斯能差值: (d) 两端开口; (e) 一端开口和闭口; (f) 两端闭口

    Fig. 7.  Contact behavior in vertical contact and VdW energy reduction: (a) 2 open ends; (b) capped and open end; (c) 2 capped ends; VdW energy reduction with: (d) 2 open ends; (e) capped and open end; (f) 2 capped ends.

    图 8  初始和变形的端部开口的三壁碳纳米管的浓度分布 (a) xz平面上; (b) x方向; (c) yz平面上; (d) y方向; (e) xz平面上; (f) z方向

    Fig. 8.  Concentration profile of initial and collapsed capped-ends three-walled CNT: (a) xz plane; (b) x; (c) yz plane; (d) y; (e) xz plane; (f) z.

    图 9  初始和变形的端部闭口的三壁碳纳米管的浓度分布 (a) xz平面上; (b) x方向; (c) yz平面上; (d) y方向; (e) xz平面上; (f) z方向

    Fig. 9.  Concentration profile of initial and collapsed open-ends three-walled CNT: (a) xz plane; (b) x; (c) yz plane; (d) y; (e) xz plane; (f) z.

    图 10  三壁闭口碳纳米管的场效应晶体管 (a)原子模型; (b)正视图; (c)侧视图; (d)俯视图

    Fig. 10.  Three-walled capped-ends CNTFET: (a) Molecular dynamic modeling of CNTFET; (b) front view; (c) side view; (d) top view

    图 11  三壁开口碳纳米管场效应晶体管 (a)原子模型; (b)正视图; (c)侧视图; (d)俯视图

    Fig. 11.  Three-walled open-ends CNTFET: (a) Molecular dynamic modeling of CNTFET; (b) front view; (c) side view; (d) top view

    图 12  单壁两端闭口碳纳米管场效应晶体管 (a)原子模型; (b)正视图; (c)侧视图; (d)俯视图

    Fig. 12.  Single-walled open-ends CNTFET: (a) Molecular dynamic modeling of CNTFET; (b) front view; (c) side view; (d) top view.

    图 13  两端开口或闭口碳纳米管与钯电极接触的构型和范德瓦耳斯能差值  接触构型:(a)单壁开口; (b)单壁闭口; (c)三壁开口; 范德瓦耳斯能差值: (d)单壁开口; (e)单壁闭口; (f)三壁开口

    Fig. 13.  Interface configuration and Van der Waals energy of CNTs contacting with palladium: (a) Single-walled open-ends CNT; (b) single-walled closed-ends CNT; (c) three-walled open-ends CNT; Van der Waals energy of (d) single-walled open-ends CNT; (e) single-walled closed-ends CNT; (f) three-walled open-ends CNT.

    表 1  多壁碳纳米管与金表面接触系统径向压缩变形前后的能量组成

    Table 1.  The energy components of multi-walled CNT and gold surface before and after collapse.

    能量组成初始状态稳定状态能量差值
    总能/Mcal/mol144.3约143–1.3
    势能/Mcal/mol约140约138.7–1.3
    动能/Mcal/mol4.5 ± 0.034.5 ± 0.03
    内能/Mcal/mol约139.3约139.50.2
    范德瓦耳斯能/Mcal/mol约0.7约–0.83–1.53
    下载: 导出CSV

    表 2  多壁碳纳米管与金表面上径向压缩变形前后的初始间距及其对应能量

    Table 2.  VDW energy of multi-walled CNT and gold surface at different original distance.

    能量对应间距初始状态最终状态范德瓦
    耳斯
    能差
    能量/
    (Mcal/mol)
    (间距/ nm)
    约0.7(1.1999)约0.7(1.16)0
    约0.7(0.9489)–0.8(0.3081)1.5
    –3.6(0.1378)–3.6(0.2933)0
    下载: 导出CSV

    表 3  多壁碳纳米管与金表面在不同金属种类、接触长度和接触模式下范德瓦耳斯能差

    Table 3.  VDW energy of MWCNT and gold surface with different metal, contact length and model.

    能量/(Mcal/mol)金属种类水平接触长度/nm垂直接触
    2.463.6894.919 两端开口开口封闭两端封闭
    范德瓦耳斯能差21.151.05 1.21.82.4 00.50
    下载: 导出CSV

    表 4  多壁碳纳米管最外层管壁与金表面的接触距离

    Table 4.  Contacting distance of outmost layer of MWCNT with gold surface.

    碳纳米
    管结构
    源漏初始间距/nm源漏最终
    间距/nm
    栅极初始
    间距/nm
    栅极最终
    间距/nm
    三壁两
    端闭口
    0.63740.290.92330.36
    三壁两
    端开口
    0.67290.32040.9320.3235
    单壁两
    端开口
    0.670.30.930.34
    下载: 导出CSV
  • [1]

    Yu M F, Dyer M J, Skidmore G D, Rohrs H W, Lu X, Ausman K D, Ehr J R V, Ruoff R S 1999 Nanotechnology 10 244Google Scholar

    [2]

    Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F, S. R R 2000 Science 287 637Google Scholar

    [3]

    Ding H Y, Shi C Y, Li M, Zhan Y, Wang M Y, Wang Y Q, Tao C, Sun L N, Fukuda T 2018 Sensors 18 1137Google Scholar

    [4]

    王亚洲, 马立, 杨权, 耿松超, 林旖旎, 陈涛, 孙立宁 2020 物理学报 69 068801Google Scholar

    Wang Y Z, Ma L, Yang Q, Geng S C, Lin Y N, Chen T, Sun L N 2020 Acta Phys. Sin. 69 068801Google Scholar

    [5]

    Zhang Z Y, Wang S, Ding L, Liang X L, Xu H L, Shen J, Chen Q, Cui R L, Li Y, Peng L M 2008 Appl. Phys. Lett. 92 133117Google Scholar

    [6]

    Xie S, Jiao N, Tung S, Liu L 2015 Micromachines 6 1317Google Scholar

    [7]

    Yu N, Shi Q, Nakajima M, Wang H P, Yang Z, Sun L N, Huang Q, Fukuda T 2017 J. Micromech. Microeng. 27 105007Google Scholar

    [8]

    Fukuda T, Arai F, Dong L 2003 Proc. IEEE 91 1803

    [9]

    Yang Z, Chen T, Wang Y Q, Sun L N, Fukuda T 2016 Micro-Nano Lett. 11 645Google Scholar

    [10]

    杨权, 马立, 杨斌, 丁汇洋, 陈涛, 杨湛, 孙立宁, 福田敏男 2018 物理学报 67 136801Google Scholar

    Yang Q, Ma L, Yang B, Ding H Y, Chen T, Yang Z, Sun L N, Toshio F 2018 Acta Phys. Sin. 67 136801Google Scholar

    [11]

    Liu P, Nakajima M, Yang Z, Fukuda T, Arai F 2009 Proc. IMechE Part N: J. Nanoengineering and Nanosystems 222 33

    [12]

    Yu N, Nakajima M, Shi Q, Yang Z, Wang H P, Sun L N, Huang Q, Fukuda T 2017 Scanning 2017 5910734

    [13]

    Shi Q, Yang Z, Guo Y N, Wang H P, Sun L N, Huang Q, Fukuda T 2017 IEEE/ASME Trans. Mechatron. 22 845Google Scholar

    [14]

    Chen Q, Wang S, Peng L M 2006 Nanotechnology 17 1087Google Scholar

    [15]

    Martel R, Schmidt T, Shea H R, Hertel T, Avouris P 1998 Appl. Phys. Lett. 73 2447Google Scholar

    [16]

    Cui J L, Zhang J W, He X Q, Mei X S, Wang W J, Yang X J, Xie H, Yang L J, Wang Y 2017 J. Nanopart. Res. 19 110Google Scholar

    [17]

    Gao G H, Çagin T, Goddard W A 1998 Nanotechnology 9 184Google Scholar

    [18]

    Yu M F, Dyer M J, Ruoff R S 2001 J. Appl. Phys. 89 4554Google Scholar

    [19]

    Liu B, Yu M F, Huang Y G 2004 Phys. Rev. B 70 2806

    [20]

    Xiao J, Liu B, Huang Y, Zuo J, Hwang K C, Yu M F 2007 Nanotechnology 18 395703Google Scholar

    [21]

    Xiao S G, Liu S L, Song M M, Ang N, Zhang H L 2020 Multibody Sys. Dyn. 48 451Google Scholar

    [22]

    Xiao S G, Liu S L, Wang H Z, Lin Y, Song M M, Zhang H L 2020 Nonlinear Dyn. 100 1203Google Scholar

    [23]

    Zhang D H, Liu Z K, Yang H B, Liu A M 2018 Mol. Simul. 44 648Google Scholar

    [24]

    Zhang D H, Yang H B, Liu Z K, Liu A M 2018 J. Alloys Compd. 765 140Google Scholar

    [25]

    Andriotis A, Menon M, Gibson H 2008 IEEE Sens. J. 8 910Google Scholar

    [26]

    Cui J L, Zhang J W, Wang X W, Theogene B, Wang W J, Tohmyoh H, He X Q, Mei X S 2019 J. Phys. Chem. C 123 19693Google Scholar

    [27]

    Cui J L, Ren X Y, Mei H H, Wang X W, Zhang J W, Fan Z J, Wang W J, Tohmyoh H, Mei X S 2020 Appl. Surf. Sci. 512 145696Google Scholar

    [28]

    Xie J, Xue Q, Yan K, Chen H, Xia D, Dong M 2009 J. Phys. Chem. C 113 14747

    [29]

    Yan K Y, Xue Q Z, Xia D, Chen H J, Xie J, Dong M D 2009 ACS Nano 3 2235Google Scholar

    [30]

    Yan K Y, Xue Q Z, Zheng Q B, Xia D, Xie J 2009 J. Phys. Chem. C 113 3120Google Scholar

    [31]

    Ling C C, Xue Q Z, Jing N N, Xia D 2012 RSC Adv. 2 7549Google Scholar

    [32]

    Mozos J, Ordejón P, Brandbyge M, Taylor J, Stokbro K 2003 Advances in Quantum Chemistry (Salt Lake City: Academic Press) pp299−314

    [33]

    Chen W, Li H, He Y Z 2014 Phys. Chem. Chem. Phys. 16 7907Google Scholar

    [34]

    李瑞, 密俊霞 2017 物理学报 66 046101Google Scholar

    Li R, Mi J X 2017 Acta Phys. Sin. 66 046101Google Scholar

    [35]

    Akita S, Nishijima H, Nakayama Y 2000 J. Phys. D: Appl. Phys. 33 2673Google Scholar

    [36]

    Yang Q 2020 Micro-Nano Lett. 15 883Google Scholar

    [37]

    Maiti A, Ricca A 2004 Chem. Phys. Lett. 395 7Google Scholar

    [38]

    Frank S P, Poncharal P, Wang Z L, Heer W A D 1998 Science 280 1744Google Scholar

    [39]

    Xiang L, Wang Y W, Zhang P P, Fong X Y, Wei X L, Hu Y F 2018 Nanoscale 10 21857Google Scholar

    [40]

    Xiao M M, Lin Y X, Xu L, Deng B, Peng H L, Peng L M, Zhang Z Y 2020 Adv. Electron. Mater. 6 2000258Google Scholar

    [41]

    Zhang Z Y, Liang X L, Wang S, Yao K, Hu Y F, Zhu Y Z, Chen Q, Zhou W W, Li Y, Yao Y G, Zhang J, Peng L M 2007 Nano Lett. 7 3603Google Scholar

    [42]

    Park C J, Kim Y H, Chang K J 1999 Phys. Rev. B 60 10656Google Scholar

    [43]

    Lu J Q, Wu J, Duan W H, Liu F, Zhu B F, Gu B L 2003 Phys. Rev. Lett. 90 156601Google Scholar

    [44]

    Lu J Q, Wu J, Duan W H, Gu B L, Johnson H T 2005 J. Appl. Phys. 97 56

    [45]

    Giusca C E, Tison Y, Silva S R P 2008 Nano Lett. 8 3350Google Scholar

  • [1] 刘子怡, 褚福强, 魏俊俊, 冯妍卉. 金刚石/碳纳米管异质界面热导及声子热输运特性. 物理学报, 2024, 73(13): 138102. doi: 10.7498/aps.73.20240323
    [2] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究. 物理学报, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [3] 李瑞, 密俊霞. 界面接枝羟基对碳纳米管运动和摩擦行为影响的分子动力学模拟. 物理学报, 2017, 66(4): 046101. doi: 10.7498/aps.66.046101
    [4] 李阳, 宋永顺, 黎明, 周昕. 碳纳米管中水孤立子扩散现象的模拟研究. 物理学报, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [5] 曾永辉, 江五贵, Qin Qing-Hua. 螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响. 物理学报, 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [6] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性. 物理学报, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [7] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵. 物理学报, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [8] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [9] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟. 物理学报, 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [10] 杜玉光, 张凯旺, 彭向阳, 金福报, 钟建新. 碳纳米管内Ni纳米线的螺旋度与热稳定性研究. 物理学报, 2012, 61(17): 176102. doi: 10.7498/aps.61.176102
    [11] 徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军. 形变碳纳米管选择通过性的分子动力学研究. 物理学报, 2012, 61(9): 096101. doi: 10.7498/aps.61.096101
    [12] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析. 物理学报, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [13] 左学云, 李中秋, 王伟, 孟利军, 张凯旺, 钟建新. 碳纳米管熔接金电极的分子动力学模拟. 物理学报, 2011, 60(6): 066103. doi: 10.7498/aps.60.066103
    [14] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性. 物理学报, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [15] 张忠强, 张洪武, 王 磊, 郑勇刚, 王晋宝. 液体水银在碳纳米管中传输的压力控制模型. 物理学报, 2008, 57(2): 1019-1024. doi: 10.7498/aps.57.1019
    [16] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响. 物理学报, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [17] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [18] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [19] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] 保文星, 朱长纯, 崔万照. 基于克隆选择的混合遗传算法在碳纳米管结构优化中的研究. 物理学报, 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
计量
  • 文章访问数:  7776
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 修回日期:  2021-03-10
  • 上网日期:  2021-05-14
  • 刊出日期:  2021-05-20

/

返回文章
返回