搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

通量可控的双壁碳纳米管水分子泵

曹平 罗成林 陈贵虎 韩典荣 朱兴凤 戴亚飞

引用本文:
Citation:

通量可控的双壁碳纳米管水分子泵

曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞

Flux controllable pumping of water molecules in a double-walled carbon nanotube

Cao Ping, Luo Cheng-Lin, Chen Gui-Hu, Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei
PDF
导出引用
  • 以双壁碳纳米管作为基本单元设计了一种新型纳米机械水泵, 其内管固定作为水分子通道, 外管做活塞式轴向运动. 分子动力学计算表明, 水分子净通量及管内水分子电偶极矩分布均与外管运动速率有强烈耦合效应. 该设计可以实现水分子的高效单向运输, 且输运效率可以通过外管活塞运动的速率进行调控. 这些发现可为未来实用纳米分子泵器件的设计提供新的思路.
    A water pumping system model has been designed based on the double-walled carbon nanotube. In this system, the inner tube is fixed as the water channel, while the exterior one can move, similar to the piston motion along the axial direction, to create a pumping force. Molecular dynamics simulations confirm that both the water flux and the water dipole orientation are sensitive to the velocity of motions of the outer tube so that a controllable unidirectional water flow can be achieved in this system by varying the velocity. Its pumping ability comes mainly from the carbon-water van der Waals driving forces of the exterior tube. The piston motion of the outer tube changes the position of the vdW balance point, which not only leads to the increase of vdW force on the water molecules already residing in the inner tube, but also enlarges their accelerated distance. Meanwhile, the orientation of water molecules inside the inner tube is strongly coupled to the water flux, the probability of +dipole states attains unity at v = 0.05 Å/ps, where the water flux reaches its maximum value (2.02 ns-1). Compared to the pump which is controlled by uniform electric field, the transmission efficiency of our mechanical pump is higher. This design may open a new way for water pumping in the field of nanodevices.
    • 基金项目: 国家自然科学基金青年基金(批准号:21203097),江苏省高校自然科学研究项目(批准号:14KJB140006)和江苏高校优势学科建设工程资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21203097), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant no. 14KJB140006), and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
    [1]

    de Groot B L, Grubmller H 2001 Science 294 2353

    [2]

    Carrero-Sanchez J C, Elias A L, Mancilla R, Arrellin G, Terrones H, Laclette J P, Terrones M 2006 Nano Lett. 6 1609

    [3]

    Yang Y L, Li X Y, Jiang J L, Du H L, Zhao L N, Zhao Y L 2010 ACS Nano 4 5755

    [4]

    Zhu F, Schulten K 2003 Biophys. J. 85 236

    [5]

    Kalra A, Garde S, Hummer G 2003 Proc.Natl. Acad. Sci. U.S.A. 100 10175

    [6]

    Xu K, Wang Q S, Tan B, Chen M X, Miao L, Jiang J J 2012 Acta Phys. Sin. 61 096101 (in Chinese) [徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军 2012 物理学报 61 096101]

    [7]

    Shen L, Xu Z, Zhou Z W, Hu G H 2014 Chin. Phys. B 23 118201

    [8]

    Kral P, Tomanek D 1999 Phys. Rev. Lett. 82 5373

    [9]

    Insepov Z, Wolf D, Hassanein A 2006 Nano Lett. 6 1893

    [10]

    Duan W H, Wang Q 2010 ACS Nano 4 2338

    [11]

    Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J, Fang H P 2007 Nature Nanotechnology 2 709

    [12]

    Zuo G C, Shen R, Ma S J, Guo W L 2010 ACS Nano 4 205

    [13]

    Su J Y, Guo H X 2011 ACS Nano 5 351

    [14]

    Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B. 115 13275

    [15]

    Li X P, Kong G P, Zhang X, He G W 2013 Appl. Phys. Lett. 103 143117

    [16]

    Jia G, Wang H F, Yan L, Wang X, Pei R J, Yan T, Zhao Y L, Guo X B 2005 Environ. Sci. Technol. 39 1378

    [17]

    Chen X, Kis A, Zettl A, Bertozzi C R 2007 Proc. Natl. Acad. Sci. U.S.A. 104 8218

    [18]

    Lacerda L, Raffa S, Prato M, Bianco A, Kostarelos K 2007 Nano Today 2 38

    [19]

    Bianco A, Kostarelos K, Prato M 2005 Curr. Opin. Chem. Biol. 9 674

    [20]

    Heister E, Lamprecht C, Neves V, Tilmaciu C, Datas L, Flahaut E, Soula B, Hinterdorfer P, Coley H M, Silva S R P, McFadden J 2010 ACS Nano 4 2615

    [21]

    Prato M, Kostarelos K, Bianco A 2008 Acc. Chem. Res. 41 60

    [22]

    Wu Z H, Wang W L, Liao K J, Wang Y T, Hu C G, Fu G Z, Wan B Y, Yu P 2004 Acta Phys. Sin. 53 3462 (in Chinese) [吴子华, 王万录, 廖克俊, 王永田, 胡陈果, 付光宗, 万步勇, 余鹏 2004 物理学报 53 3462]

    [23]

    Wang J L, Xiong G P, Gu M, Zhang X, Liang J 2009 Acta Phys. Sin. 58 4536 (in Chinese) [王建立, 熊国平, 顾明, 张兴, 梁吉 2009 物理学报 58 4536]

    [24]

    Zhang K W, Li Z Q, Wu J, Peng X Y, Tan X J, Sun L Z, Zhang J X 2012 Chin. Phys. B 21 106102

    [25]

    Cumings J, Zettl A 2000 Science 289 602

    [26]

    Legoas S B, Coluci V R, Brage S F, Coura P Z, Dantas S O, Galvao D S 2003 Phys. Rev. Lett. 90 055504

    [27]

    Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L, Schulten K 2005 J. Comput. Chem. 26 1781

    [28]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926

    [29]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577

    [30]

    Hummer G, Rasiah J C, Nowortya J 2001 Nature 414 188

    [31]

    Wan R Z, Li J Y, Lu H J, Fang H P 2005 J. Am. Chem. Soc. 127 7166

    [32]

    Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H 2007 Proc.Natl. Acad. Sci. U.S.A. 104 3687

    [33]

    Zou J, Ji B, Feng X Q, Gao H 2006 Small 2 1348

    [34]

    Heymann J B, Engel A 1999 News. Physiol. Sci 14 187

    [35]

    Walz T, Smith B L, Zeidel M L, Engel A, Agre P 1994 J. Biol. Chem. 269 1583

    [36]

    Wan R Z, Lu H J, Li J Y, Bao J D, Hu J, Fang H P 2009 Phys. Chem. Chem. Phys. 11 9898

    [37]

    Joseph S, Aluru N R 2008 Nano Lett. 8 452

    [38]

    Joseph S, Aluru N R 2008 Phys. Rev. Lett. 101 064502

  • [1]

    de Groot B L, Grubmller H 2001 Science 294 2353

    [2]

    Carrero-Sanchez J C, Elias A L, Mancilla R, Arrellin G, Terrones H, Laclette J P, Terrones M 2006 Nano Lett. 6 1609

    [3]

    Yang Y L, Li X Y, Jiang J L, Du H L, Zhao L N, Zhao Y L 2010 ACS Nano 4 5755

    [4]

    Zhu F, Schulten K 2003 Biophys. J. 85 236

    [5]

    Kalra A, Garde S, Hummer G 2003 Proc.Natl. Acad. Sci. U.S.A. 100 10175

    [6]

    Xu K, Wang Q S, Tan B, Chen M X, Miao L, Jiang J J 2012 Acta Phys. Sin. 61 096101 (in Chinese) [徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军 2012 物理学报 61 096101]

    [7]

    Shen L, Xu Z, Zhou Z W, Hu G H 2014 Chin. Phys. B 23 118201

    [8]

    Kral P, Tomanek D 1999 Phys. Rev. Lett. 82 5373

    [9]

    Insepov Z, Wolf D, Hassanein A 2006 Nano Lett. 6 1893

    [10]

    Duan W H, Wang Q 2010 ACS Nano 4 2338

    [11]

    Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J, Fang H P 2007 Nature Nanotechnology 2 709

    [12]

    Zuo G C, Shen R, Ma S J, Guo W L 2010 ACS Nano 4 205

    [13]

    Su J Y, Guo H X 2011 ACS Nano 5 351

    [14]

    Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B. 115 13275

    [15]

    Li X P, Kong G P, Zhang X, He G W 2013 Appl. Phys. Lett. 103 143117

    [16]

    Jia G, Wang H F, Yan L, Wang X, Pei R J, Yan T, Zhao Y L, Guo X B 2005 Environ. Sci. Technol. 39 1378

    [17]

    Chen X, Kis A, Zettl A, Bertozzi C R 2007 Proc. Natl. Acad. Sci. U.S.A. 104 8218

    [18]

    Lacerda L, Raffa S, Prato M, Bianco A, Kostarelos K 2007 Nano Today 2 38

    [19]

    Bianco A, Kostarelos K, Prato M 2005 Curr. Opin. Chem. Biol. 9 674

    [20]

    Heister E, Lamprecht C, Neves V, Tilmaciu C, Datas L, Flahaut E, Soula B, Hinterdorfer P, Coley H M, Silva S R P, McFadden J 2010 ACS Nano 4 2615

    [21]

    Prato M, Kostarelos K, Bianco A 2008 Acc. Chem. Res. 41 60

    [22]

    Wu Z H, Wang W L, Liao K J, Wang Y T, Hu C G, Fu G Z, Wan B Y, Yu P 2004 Acta Phys. Sin. 53 3462 (in Chinese) [吴子华, 王万录, 廖克俊, 王永田, 胡陈果, 付光宗, 万步勇, 余鹏 2004 物理学报 53 3462]

    [23]

    Wang J L, Xiong G P, Gu M, Zhang X, Liang J 2009 Acta Phys. Sin. 58 4536 (in Chinese) [王建立, 熊国平, 顾明, 张兴, 梁吉 2009 物理学报 58 4536]

    [24]

    Zhang K W, Li Z Q, Wu J, Peng X Y, Tan X J, Sun L Z, Zhang J X 2012 Chin. Phys. B 21 106102

    [25]

    Cumings J, Zettl A 2000 Science 289 602

    [26]

    Legoas S B, Coluci V R, Brage S F, Coura P Z, Dantas S O, Galvao D S 2003 Phys. Rev. Lett. 90 055504

    [27]

    Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L, Schulten K 2005 J. Comput. Chem. 26 1781

    [28]

    Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926

    [29]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577

    [30]

    Hummer G, Rasiah J C, Nowortya J 2001 Nature 414 188

    [31]

    Wan R Z, Li J Y, Lu H J, Fang H P 2005 J. Am. Chem. Soc. 127 7166

    [32]

    Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H 2007 Proc.Natl. Acad. Sci. U.S.A. 104 3687

    [33]

    Zou J, Ji B, Feng X Q, Gao H 2006 Small 2 1348

    [34]

    Heymann J B, Engel A 1999 News. Physiol. Sci 14 187

    [35]

    Walz T, Smith B L, Zeidel M L, Engel A, Agre P 1994 J. Biol. Chem. 269 1583

    [36]

    Wan R Z, Lu H J, Li J Y, Bao J D, Hu J, Fang H P 2009 Phys. Chem. Chem. Phys. 11 9898

    [37]

    Joseph S, Aluru N R 2008 Nano Lett. 8 452

    [38]

    Joseph S, Aluru N R 2008 Phys. Rev. Lett. 101 064502

  • [1] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究. 物理学报, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [2] 林旖旎, 马立, 杨权, 耿松超, 叶茂盛, 陈涛, 孙立宁. 径向压缩碳纳米管的电子输运性质. 物理学报, 2022, 71(2): 027301. doi: 10.7498/aps.71.20211370
    [3] 林旖旎, 马立, 杨权, 陈涛. 径向压缩碳纳米管的电子输运性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211370
    [4] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟. 物理学报, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [5] 李阳, 宋永顺, 黎明, 周昕. 碳纳米管中水孤立子扩散现象的模拟研究. 物理学报, 2016, 65(14): 140202. doi: 10.7498/aps.65.140202
    [6] 曾永辉, 江五贵, Qin Qing-Hua. 螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响. 物理学报, 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [7] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性. 物理学报, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [8] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [9] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟. 物理学报, 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [10] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析. 物理学报, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [11] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [12] 陈俊, 史琳, 王楠, 毕胜山. 基于分子动力学模拟流体输运性质的稳定性分析. 物理学报, 2011, 60(12): 126601. doi: 10.7498/aps.60.126601
    [13] 欧阳方平, 徐慧, 林峰. 双空位缺陷石墨纳米带的电子结构和输运性质研究. 物理学报, 2009, 58(6): 4132-4136. doi: 10.7498/aps.58.4132
    [14] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性. 物理学报, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [15] 欧阳方平, 徐 慧, 魏 辰. Zigzag型石墨纳米带电子结构和输运性质的第一性原理研究. 物理学报, 2008, 57(2): 1073-1077. doi: 10.7498/aps.57.1073
    [16] 欧阳方平, 王焕友, 李明君, 肖 金, 徐 慧. 单空位缺陷对石墨纳米带电子结构和输运性质的影响. 物理学报, 2008, 57(11): 7132-7138. doi: 10.7498/aps.57.7132
    [17] 张忠强, 张洪武, 王 磊, 郑勇刚, 王晋宝. 液体水银在碳纳米管中传输的压力控制模型. 物理学报, 2008, 57(2): 1019-1024. doi: 10.7498/aps.57.1019
    [18] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响. 物理学报, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [19] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] 保文星, 朱长纯, 崔万照. 基于克隆选择的混合遗传算法在碳纳米管结构优化中的研究. 物理学报, 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
计量
  • 文章访问数:  3316
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-19
  • 修回日期:  2014-12-25
  • 刊出日期:  2015-06-05

通量可控的双壁碳纳米管水分子泵

  • 1. 南京师范大学, 物理科学与技术学院, 南京 210023;
  • 2. 江苏省光电科学技术重点实验室, 南京 210023;
  • 3. 江苏第二师范学院, 物理与电子工程学院, 南京 210013
    基金项目: 国家自然科学基金青年基金(批准号:21203097),江苏省高校自然科学研究项目(批准号:14KJB140006)和江苏高校优势学科建设工程资助的课题.

摘要: 以双壁碳纳米管作为基本单元设计了一种新型纳米机械水泵, 其内管固定作为水分子通道, 外管做活塞式轴向运动. 分子动力学计算表明, 水分子净通量及管内水分子电偶极矩分布均与外管运动速率有强烈耦合效应. 该设计可以实现水分子的高效单向运输, 且输运效率可以通过外管活塞运动的速率进行调控. 这些发现可为未来实用纳米分子泵器件的设计提供新的思路.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回