搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管中水孤立子扩散现象的模拟研究

李阳 宋永顺 黎明 周昕

引用本文:
Citation:

碳纳米管中水孤立子扩散现象的模拟研究

李阳, 宋永顺, 黎明, 周昕

Simulation studies on the diffusion of water solitons in carbon nanotube

Li Yang, Song Yong-Shun, Li Ming, Zhou Xin
PDF
导出引用
  • 受限于人造或天然纳米通道的分子运动已成为纳米科学的研究热点, 对生物和化学也具有重要意义. 本文采用分子动力学模拟的方法研究了水分子在单壁扶手椅型碳纳米管内的运动. 针对基于水密度缺陷的孤立子输运机理, 我们发展了新的方法用以准确鉴别孤立子, 在此基础上细致研究了孤立子的运动行为, 发现其满足标准一维扩散运动的特征. 我们的模拟还表明, 温度越高, 孤立子扩散速度越大; 孤立子数密度越大, 其扩散速度越小, 这与前人提出的孤立子之间存在弱排斥的设想是一致的.
    Fluid transport is a very common phenomenon. Recently flow process in nanochannels has drawn much attention, since it differs quite much from that in macroscopic pipes. In particular, the motion of confined water molecules in nonpolar nanochannels has become a hotspot in nanotechnology, and also an important issue in biology and chemistry. Besides the experimental studies, computer simulations (e.g., molecular dynamics simulation) have also been proven to be a powerful tool to investigate such issues. Early simulations focused on the concurrent motion of all water molecules inside nanochannels such as carbon nanotubes (CNTs), where water molecules are evenly spaced in a single file and occasionally but collectively transport through CNTs. Recently, a new model of water transport in CNTs was presented, which indicates that water-density defects in the one-dimensional (1D) chain of water molecules can move as solitons. This is explained as a natural consequence of competition between water-water interactions and water-CNT interactions. While this new model is very appealing, the identification of soliton is not a trivial work (especially at not very low temperatures), since the density defects of water molecules might not be easily recognized from their thermal fluctuation. In this paper, a new method is developed to precisely identify the soliton by quenching the simulation conformations to their nearest neighboring local minima. Based on the new soliton identification method, we study the motion of water in single-walled armchair CNTs by all-atom molecular dynamics simulations. We investigate the motion of solitons in detail, which is observed as a standard 1D diffusion on a picosecond time scale. The simulations also show that the diffusion coefficient of solitons increases with temperature rising, and decreases with the number density of solitons increasing. These results are consistent with the postulation that there exists a weak repulsion between solitons.
      通信作者: 周昕, xzhou@ucas.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11105218,11347614)资助的课题.
      Corresponding author: Zhou Xin, xzhou@ucas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11105218, 11347614).
    [1]

    de Groot B L, Grubmuller H 2001 Science 294 2353

    [2]

    Bai J, Zeng X C 2012 Proc. Natl. Acad. Sci. 109 21240

    [3]

    Sparreboom W, Van Den Berg A, Eijkel J C T 2010 New J. Phys. 12 015004

    [4]

    Su J Y, Guo H X 2013 J. Phys. Chem. B 117 11772

    [5]

    Liu J, Shi G S, Guo P, Yang J R, Fang H P 2015 Phys. Rev. Lett. 115 164502

    [6]

    Bianco A, Kostarelos K, Prato M 2005 Curr. Opin. Chem. Biol. 9 674

    [7]

    Hernndez-Rojas J, Calvo F, Bretn J, Gomez Llorente J M 2012 J. Phys. Chem. C 116 17019

    [8]

    Rasaiah J C, Garde S, Hummer G 2008 Annu. Rev. Phys. Chem. 59 713

    [9]

    Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44

    [10]

    Holt J K, Park H G, Wang Y, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034

    [11]

    Feng J W, Ding H M, Ren C L, Ma Y Q 2014 Nanoscale 6 13606

    [12]

    Qian Z, Fu Z, Wei G 2014 J. Chem. Phys. 140 154508

    [13]

    Vaitheeswaran S, Rasaiah J C, Hummer G 2004 J. Chem. Phys. 121 7955

    [14]

    Zhou X, Li C Q, Iwamoto M 2004 J. Chem. Phys. 121 7996

    [15]

    Kofinger J, Hummer G, Dellago C 2011 Phys. Chem. Chem. Phys. 13 15403

    [16]

    Zhu F Q, Tajkhorshid E, Schulten K 2004 Biophys. J. 86 50

    [17]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [18]

    Mukherjee B, Maiti P K, Dasgupta C, Sood A K 2007 J. Chem. Phys. 126 124704

    [19]

    Corry B 2008 J. Phys. Chem. B 112 1427

    [20]

    Alexiadis A, Kassinos S 2008 Chem. Eng. Sci. 63 2047

    [21]

    Berezhkovskii A, Hummer G 2002 Phys. Rev. Lett. 89 064503

    [22]

    Sisan T B, Lichter S 2014 Phys. Rev. Lett. 112 044501

    [23]

    Braun O M, Kivshar Y S 1998 Phys. Rep. 306 1

    [24]

    Coppersmith S N, Fisher D S 1988 Phys. Rev. A 38 6338

    [25]

    McLaughlin D W, Scott A C 1978 Phys. Rev. A 18 1652

    [26]

    Strunz T, Elmer F J 1998 Phys. Rev. E 58 1612

    [27]

    Lou Y M, Liu J H, Zhou X P, Liu J C 2009 Journal of Southwest China Normal University (Natural Science Edition) 34 34 (in Chinese) [娄彦敏, 刘娟红, 周晓平, 刘锦超 2009 西南师范大学学报(自然科学版) 34 34]

  • [1]

    de Groot B L, Grubmuller H 2001 Science 294 2353

    [2]

    Bai J, Zeng X C 2012 Proc. Natl. Acad. Sci. 109 21240

    [3]

    Sparreboom W, Van Den Berg A, Eijkel J C T 2010 New J. Phys. 12 015004

    [4]

    Su J Y, Guo H X 2013 J. Phys. Chem. B 117 11772

    [5]

    Liu J, Shi G S, Guo P, Yang J R, Fang H P 2015 Phys. Rev. Lett. 115 164502

    [6]

    Bianco A, Kostarelos K, Prato M 2005 Curr. Opin. Chem. Biol. 9 674

    [7]

    Hernndez-Rojas J, Calvo F, Bretn J, Gomez Llorente J M 2012 J. Phys. Chem. C 116 17019

    [8]

    Rasaiah J C, Garde S, Hummer G 2008 Annu. Rev. Phys. Chem. 59 713

    [9]

    Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44

    [10]

    Holt J K, Park H G, Wang Y, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034

    [11]

    Feng J W, Ding H M, Ren C L, Ma Y Q 2014 Nanoscale 6 13606

    [12]

    Qian Z, Fu Z, Wei G 2014 J. Chem. Phys. 140 154508

    [13]

    Vaitheeswaran S, Rasaiah J C, Hummer G 2004 J. Chem. Phys. 121 7955

    [14]

    Zhou X, Li C Q, Iwamoto M 2004 J. Chem. Phys. 121 7996

    [15]

    Kofinger J, Hummer G, Dellago C 2011 Phys. Chem. Chem. Phys. 13 15403

    [16]

    Zhu F Q, Tajkhorshid E, Schulten K 2004 Biophys. J. 86 50

    [17]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [18]

    Mukherjee B, Maiti P K, Dasgupta C, Sood A K 2007 J. Chem. Phys. 126 124704

    [19]

    Corry B 2008 J. Phys. Chem. B 112 1427

    [20]

    Alexiadis A, Kassinos S 2008 Chem. Eng. Sci. 63 2047

    [21]

    Berezhkovskii A, Hummer G 2002 Phys. Rev. Lett. 89 064503

    [22]

    Sisan T B, Lichter S 2014 Phys. Rev. Lett. 112 044501

    [23]

    Braun O M, Kivshar Y S 1998 Phys. Rep. 306 1

    [24]

    Coppersmith S N, Fisher D S 1988 Phys. Rev. A 38 6338

    [25]

    McLaughlin D W, Scott A C 1978 Phys. Rev. A 18 1652

    [26]

    Strunz T, Elmer F J 1998 Phys. Rev. E 58 1612

    [27]

    Lou Y M, Liu J H, Zhou X P, Liu J C 2009 Journal of Southwest China Normal University (Natural Science Edition) 34 34 (in Chinese) [娄彦敏, 刘娟红, 周晓平, 刘锦超 2009 西南师范大学学报(自然科学版) 34 34]

计量
  • 文章访问数:  3539
  • PDF下载量:  398
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-15
  • 修回日期:  2016-04-21
  • 刊出日期:  2016-07-05

碳纳米管中水孤立子扩散现象的模拟研究

  • 1. 中国科学院大学物理科学学院, 北京 100049
  • 通信作者: 周昕, xzhou@ucas.ac.cn
    基金项目: 国家自然科学基金(批准号:11105218,11347614)资助的课题.

摘要: 受限于人造或天然纳米通道的分子运动已成为纳米科学的研究热点, 对生物和化学也具有重要意义. 本文采用分子动力学模拟的方法研究了水分子在单壁扶手椅型碳纳米管内的运动. 针对基于水密度缺陷的孤立子输运机理, 我们发展了新的方法用以准确鉴别孤立子, 在此基础上细致研究了孤立子的运动行为, 发现其满足标准一维扩散运动的特征. 我们的模拟还表明, 温度越高, 孤立子扩散速度越大; 孤立子数密度越大, 其扩散速度越小, 这与前人提出的孤立子之间存在弱排斥的设想是一致的.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回