搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管中水孤立子扩散现象的模拟研究

李阳 宋永顺 黎明 周昕

引用本文:
Citation:

碳纳米管中水孤立子扩散现象的模拟研究

李阳, 宋永顺, 黎明, 周昕

Simulation studies on the diffusion of water solitons in carbon nanotube

Li Yang, Song Yong-Shun, Li Ming, Zhou Xin
PDF
导出引用
  • 受限于人造或天然纳米通道的分子运动已成为纳米科学的研究热点, 对生物和化学也具有重要意义. 本文采用分子动力学模拟的方法研究了水分子在单壁扶手椅型碳纳米管内的运动. 针对基于水密度缺陷的孤立子输运机理, 我们发展了新的方法用以准确鉴别孤立子, 在此基础上细致研究了孤立子的运动行为, 发现其满足标准一维扩散运动的特征. 我们的模拟还表明, 温度越高, 孤立子扩散速度越大; 孤立子数密度越大, 其扩散速度越小, 这与前人提出的孤立子之间存在弱排斥的设想是一致的.
    Fluid transport is a very common phenomenon. Recently flow process in nanochannels has drawn much attention, since it differs quite much from that in macroscopic pipes. In particular, the motion of confined water molecules in nonpolar nanochannels has become a hotspot in nanotechnology, and also an important issue in biology and chemistry. Besides the experimental studies, computer simulations (e.g., molecular dynamics simulation) have also been proven to be a powerful tool to investigate such issues. Early simulations focused on the concurrent motion of all water molecules inside nanochannels such as carbon nanotubes (CNTs), where water molecules are evenly spaced in a single file and occasionally but collectively transport through CNTs. Recently, a new model of water transport in CNTs was presented, which indicates that water-density defects in the one-dimensional (1D) chain of water molecules can move as solitons. This is explained as a natural consequence of competition between water-water interactions and water-CNT interactions. While this new model is very appealing, the identification of soliton is not a trivial work (especially at not very low temperatures), since the density defects of water molecules might not be easily recognized from their thermal fluctuation. In this paper, a new method is developed to precisely identify the soliton by quenching the simulation conformations to their nearest neighboring local minima. Based on the new soliton identification method, we study the motion of water in single-walled armchair CNTs by all-atom molecular dynamics simulations. We investigate the motion of solitons in detail, which is observed as a standard 1D diffusion on a picosecond time scale. The simulations also show that the diffusion coefficient of solitons increases with temperature rising, and decreases with the number density of solitons increasing. These results are consistent with the postulation that there exists a weak repulsion between solitons.
      通信作者: 周昕, xzhou@ucas.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11105218,11347614)资助的课题.
      Corresponding author: Zhou Xin, xzhou@ucas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11105218, 11347614).
    [1]

    de Groot B L, Grubmuller H 2001 Science 294 2353

    [2]

    Bai J, Zeng X C 2012 Proc. Natl. Acad. Sci. 109 21240

    [3]

    Sparreboom W, Van Den Berg A, Eijkel J C T 2010 New J. Phys. 12 015004

    [4]

    Su J Y, Guo H X 2013 J. Phys. Chem. B 117 11772

    [5]

    Liu J, Shi G S, Guo P, Yang J R, Fang H P 2015 Phys. Rev. Lett. 115 164502

    [6]

    Bianco A, Kostarelos K, Prato M 2005 Curr. Opin. Chem. Biol. 9 674

    [7]

    Hernndez-Rojas J, Calvo F, Bretn J, Gomez Llorente J M 2012 J. Phys. Chem. C 116 17019

    [8]

    Rasaiah J C, Garde S, Hummer G 2008 Annu. Rev. Phys. Chem. 59 713

    [9]

    Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44

    [10]

    Holt J K, Park H G, Wang Y, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034

    [11]

    Feng J W, Ding H M, Ren C L, Ma Y Q 2014 Nanoscale 6 13606

    [12]

    Qian Z, Fu Z, Wei G 2014 J. Chem. Phys. 140 154508

    [13]

    Vaitheeswaran S, Rasaiah J C, Hummer G 2004 J. Chem. Phys. 121 7955

    [14]

    Zhou X, Li C Q, Iwamoto M 2004 J. Chem. Phys. 121 7996

    [15]

    Kofinger J, Hummer G, Dellago C 2011 Phys. Chem. Chem. Phys. 13 15403

    [16]

    Zhu F Q, Tajkhorshid E, Schulten K 2004 Biophys. J. 86 50

    [17]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [18]

    Mukherjee B, Maiti P K, Dasgupta C, Sood A K 2007 J. Chem. Phys. 126 124704

    [19]

    Corry B 2008 J. Phys. Chem. B 112 1427

    [20]

    Alexiadis A, Kassinos S 2008 Chem. Eng. Sci. 63 2047

    [21]

    Berezhkovskii A, Hummer G 2002 Phys. Rev. Lett. 89 064503

    [22]

    Sisan T B, Lichter S 2014 Phys. Rev. Lett. 112 044501

    [23]

    Braun O M, Kivshar Y S 1998 Phys. Rep. 306 1

    [24]

    Coppersmith S N, Fisher D S 1988 Phys. Rev. A 38 6338

    [25]

    McLaughlin D W, Scott A C 1978 Phys. Rev. A 18 1652

    [26]

    Strunz T, Elmer F J 1998 Phys. Rev. E 58 1612

    [27]

    Lou Y M, Liu J H, Zhou X P, Liu J C 2009 Journal of Southwest China Normal University (Natural Science Edition) 34 34 (in Chinese) [娄彦敏, 刘娟红, 周晓平, 刘锦超 2009 西南师范大学学报(自然科学版) 34 34]

  • [1]

    de Groot B L, Grubmuller H 2001 Science 294 2353

    [2]

    Bai J, Zeng X C 2012 Proc. Natl. Acad. Sci. 109 21240

    [3]

    Sparreboom W, Van Den Berg A, Eijkel J C T 2010 New J. Phys. 12 015004

    [4]

    Su J Y, Guo H X 2013 J. Phys. Chem. B 117 11772

    [5]

    Liu J, Shi G S, Guo P, Yang J R, Fang H P 2015 Phys. Rev. Lett. 115 164502

    [6]

    Bianco A, Kostarelos K, Prato M 2005 Curr. Opin. Chem. Biol. 9 674

    [7]

    Hernndez-Rojas J, Calvo F, Bretn J, Gomez Llorente J M 2012 J. Phys. Chem. C 116 17019

    [8]

    Rasaiah J C, Garde S, Hummer G 2008 Annu. Rev. Phys. Chem. 59 713

    [9]

    Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44

    [10]

    Holt J K, Park H G, Wang Y, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034

    [11]

    Feng J W, Ding H M, Ren C L, Ma Y Q 2014 Nanoscale 6 13606

    [12]

    Qian Z, Fu Z, Wei G 2014 J. Chem. Phys. 140 154508

    [13]

    Vaitheeswaran S, Rasaiah J C, Hummer G 2004 J. Chem. Phys. 121 7955

    [14]

    Zhou X, Li C Q, Iwamoto M 2004 J. Chem. Phys. 121 7996

    [15]

    Kofinger J, Hummer G, Dellago C 2011 Phys. Chem. Chem. Phys. 13 15403

    [16]

    Zhu F Q, Tajkhorshid E, Schulten K 2004 Biophys. J. 86 50

    [17]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [18]

    Mukherjee B, Maiti P K, Dasgupta C, Sood A K 2007 J. Chem. Phys. 126 124704

    [19]

    Corry B 2008 J. Phys. Chem. B 112 1427

    [20]

    Alexiadis A, Kassinos S 2008 Chem. Eng. Sci. 63 2047

    [21]

    Berezhkovskii A, Hummer G 2002 Phys. Rev. Lett. 89 064503

    [22]

    Sisan T B, Lichter S 2014 Phys. Rev. Lett. 112 044501

    [23]

    Braun O M, Kivshar Y S 1998 Phys. Rep. 306 1

    [24]

    Coppersmith S N, Fisher D S 1988 Phys. Rev. A 38 6338

    [25]

    McLaughlin D W, Scott A C 1978 Phys. Rev. A 18 1652

    [26]

    Strunz T, Elmer F J 1998 Phys. Rev. E 58 1612

    [27]

    Lou Y M, Liu J H, Zhou X P, Liu J C 2009 Journal of Southwest China Normal University (Natural Science Edition) 34 34 (in Chinese) [娄彦敏, 刘娟红, 周晓平, 刘锦超 2009 西南师范大学学报(自然科学版) 34 34]

  • [1] 秦成龙, 罗祥燕, 谢泉, 吴乔丹. 碳纳米管和碳化硅纳米管热导率的分子动力学研究. 物理学报, 2022, 71(3): 030202. doi: 10.7498/aps.71.20210969
    [2] 杨权, 马立, 耿松超, 林旖旎, 陈涛, 孙立宁. 多壁碳纳米管与金属表面间接触行为的分子动力学模拟. 物理学报, 2021, 70(10): 106101. doi: 10.7498/aps.70.20202194
    [3] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟. 物理学报, 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [4] 曾永辉, 江五贵, Qin Qing-Hua. 螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响. 物理学报, 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [5] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性. 物理学报, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [6] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵. 物理学报, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [7] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [8] 焦学敬, 欧阳方平, 彭盛霖, 李建平, 段吉安, 胡友旺. 碳纳米管对接成异质结器件的计算模拟. 物理学报, 2013, 62(10): 106101. doi: 10.7498/aps.62.106101
    [9] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒. 相变材料热物理性质的分子动力学模拟. 物理学报, 2013, 62(5): 056601. doi: 10.7498/aps.62.056601
    [10] 徐葵, 王青松, 谭兵, 陈明璇, 缪灵, 江建军. 形变碳纳米管选择通过性的分子动力学研究. 物理学报, 2012, 61(9): 096101. doi: 10.7498/aps.61.096101
    [11] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析. 物理学报, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [12] 陈敏. 分子动力学方法研究金属Ti中He小团簇的迁移. 物理学报, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [13] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运. 物理学报, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [14] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性. 物理学报, 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [15] 张忠强, 张洪武, 王 磊, 郑勇刚, 王晋宝. 液体水银在碳纳米管中传输的压力控制模型. 物理学报, 2008, 57(2): 1019-1024. doi: 10.7498/aps.57.1019
    [16] 辛 浩, 韩 强, 姚小虎. 单、双原子空位缺陷对扶手椅型单层碳纳米管屈曲性能的不同影响. 物理学报, 2008, 57(7): 4391-4396. doi: 10.7498/aps.57.4391
    [17] 孟利军, 张凯旺, 钟建新. 硅纳米颗粒在碳纳米管表面生长的分子动力学模拟. 物理学报, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [18] 李 瑞, 胡元中, 王 慧, 张宇军. 单壁碳纳米管在石墨基底上运动的分子动力学模拟. 物理学报, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [19] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [20] 保文星, 朱长纯, 崔万照. 基于克隆选择的混合遗传算法在碳纳米管结构优化中的研究. 物理学报, 2005, 54(11): 5281-5287. doi: 10.7498/aps.54.5281
计量
  • 文章访问数:  3015
  • PDF下载量:  395
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-15
  • 修回日期:  2016-04-21
  • 刊出日期:  2016-07-05

碳纳米管中水孤立子扩散现象的模拟研究

  • 1. 中国科学院大学物理科学学院, 北京 100049
  • 通信作者: 周昕, xzhou@ucas.ac.cn
    基金项目: 国家自然科学基金(批准号:11105218,11347614)资助的课题.

摘要: 受限于人造或天然纳米通道的分子运动已成为纳米科学的研究热点, 对生物和化学也具有重要意义. 本文采用分子动力学模拟的方法研究了水分子在单壁扶手椅型碳纳米管内的运动. 针对基于水密度缺陷的孤立子输运机理, 我们发展了新的方法用以准确鉴别孤立子, 在此基础上细致研究了孤立子的运动行为, 发现其满足标准一维扩散运动的特征. 我们的模拟还表明, 温度越高, 孤立子扩散速度越大; 孤立子数密度越大, 其扩散速度越小, 这与前人提出的孤立子之间存在弱排斥的设想是一致的.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回