搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子束刻蚀碲镉汞晶体的电学特性研究

徐国庆 刘向阳 张可锋 杜云辰 李向阳

引用本文:
Citation:

离子束刻蚀碲镉汞晶体的电学特性研究

徐国庆, 刘向阳, 张可锋, 杜云辰, 李向阳

Study on electrical properties of ion-beam-etched HgCdTe crystal

Xu Guo-Qing, Liu Xiang-Yang, Zhang Ke-Feng, Du Yun-Chen, Li Xiang-Yang
PDF
导出引用
  • 本文利用迁移率谱分析了离子束刻蚀后的碲镉汞晶体, 发现180 μm的p型碲镉汞晶体在刻蚀后完全转为n型, 且由两个不同电学特性的电子层组成:低迁移率的表面电子层和高迁移率的体电子层. 通过分析不同温度下的迁移率谱, 表明表面电子层的迁移率不随温度而变化, 而体电子层的迁移率随温度的变化与传统的n型碲镉汞材料一致. 不同厚度下的霍尔参数表明体电子层的电学性质均匀. 另外, 通过计算得到表面电子层的浓度要比体电子层高2-3个数量级.
    In this paper, we study the electrical properties of ion-beam-etched Hg1-xCdxTe (x=0.236) crystal with the help of mobility spectrum analysis technique. In step-by-step chemical etching, it is shown that the p-HgCdTe is completely converted to the n-type one which includes a damaged surface electron layer with a low mobility and a bulk electron layer with a higher mobility after ion etching. The mobility spectra at different temperatures show that the mobility of the surface electrons is independent of temperature in the measurement temperature range while the bulk electrons exhibit a classical behavior of n-HgCdTe with characteristics that are strongly dependent on temperature. Hall data for different thicknesses show that the electrical properties of the bulk layer are uniform. Otherwise, the surface electron layer may be found to consist of a concentration about 2-3 order of magnitude higher than the bulk electron layer.
    [1]

    Reine M B 2009 Proc. of SPIE 7298 72982S

    [2]

    Ashcroft A, Baker I 2010 Proc. of SPIE 7660 76603C

    [3]

    Antoszewski J, Dell J M, Faraone L 2009 Proc. of SPIE 7298 729830

    [4]

    Wotherspoon J T M 1981 UK Patent 209898

    [5]

    Bazhenov N I, Gasanov S I, Ivanov V I, Mironov K E, Mynbaev K O 1991 Sov. Phis. Semicond. 25 2196

    [6]

    Strong R L, Kinch M A, Armstrong J M 2013 J. Elec. Mat. 42 3103

    [7]

    Armstrong J M, Skokan M R, Kinch M A 2014 Proc. of SPIE 9070 907033

    [8]

    Belas E, Hoschi P, Grill R, France J, Moravec P, Lischka K, Sitter H, Toth A 1993 Semicond. Sci. Technol 8 1695

    [9]

    Izhnin I I, Izhnin A I, Kurbanov K R, Prytuljak B B 1997 SPIE 3182 383

    [10]

    Berchenko N N, Bogoboy V V, Izhnin I I, Kurbanov K R, Vlasov A P, Yudenkov V A 2003 Opto-Electron. Rev. 11 93

    [11]

    Nguyen T, Antoszewski J, Musca C A, Redfern D A, Dell J M, Faraone L 2002 Journal of Electronic Materials 31 652

    [12]

    Bogoboyashchyy V V, Izhnin I I, Mynbaev K D, Pociask M, Vlasov A P 2006 Scmicond. Sci. Technol. 21 1144

    [13]

    Zhang K F, Lin T, Wang N L, Wang R, Jiao C L, Lin X C, Zhang L P, Li X Y 2011 J. Infarend Millim. Waves 30 301 (in Chinese) [张可锋, 林铁, 王妮丽, 王仍, 焦翠灵, 林杏潮, 张莉萍, 李向阳 2011 红外与毫米波学报 30 301]

    [14]

    Meyer J J R, Hoffman C A, Bartoli F J, Antoszewski J, Faraone L 1998 US Patent 5789931

    [15]

    Petritz R L 1958 Phys. Rev. 110 1254

    [16]

    Lu H Q 1998 Ph. D. Dossertation (Shanghai:Shanghai Institute of Technical Physics) (in Chinese) [陆慧庆1998博士学位论文(上海:上海技术物理研究所)]

  • [1]

    Reine M B 2009 Proc. of SPIE 7298 72982S

    [2]

    Ashcroft A, Baker I 2010 Proc. of SPIE 7660 76603C

    [3]

    Antoszewski J, Dell J M, Faraone L 2009 Proc. of SPIE 7298 729830

    [4]

    Wotherspoon J T M 1981 UK Patent 209898

    [5]

    Bazhenov N I, Gasanov S I, Ivanov V I, Mironov K E, Mynbaev K O 1991 Sov. Phis. Semicond. 25 2196

    [6]

    Strong R L, Kinch M A, Armstrong J M 2013 J. Elec. Mat. 42 3103

    [7]

    Armstrong J M, Skokan M R, Kinch M A 2014 Proc. of SPIE 9070 907033

    [8]

    Belas E, Hoschi P, Grill R, France J, Moravec P, Lischka K, Sitter H, Toth A 1993 Semicond. Sci. Technol 8 1695

    [9]

    Izhnin I I, Izhnin A I, Kurbanov K R, Prytuljak B B 1997 SPIE 3182 383

    [10]

    Berchenko N N, Bogoboy V V, Izhnin I I, Kurbanov K R, Vlasov A P, Yudenkov V A 2003 Opto-Electron. Rev. 11 93

    [11]

    Nguyen T, Antoszewski J, Musca C A, Redfern D A, Dell J M, Faraone L 2002 Journal of Electronic Materials 31 652

    [12]

    Bogoboyashchyy V V, Izhnin I I, Mynbaev K D, Pociask M, Vlasov A P 2006 Scmicond. Sci. Technol. 21 1144

    [13]

    Zhang K F, Lin T, Wang N L, Wang R, Jiao C L, Lin X C, Zhang L P, Li X Y 2011 J. Infarend Millim. Waves 30 301 (in Chinese) [张可锋, 林铁, 王妮丽, 王仍, 焦翠灵, 林杏潮, 张莉萍, 李向阳 2011 红外与毫米波学报 30 301]

    [14]

    Meyer J J R, Hoffman C A, Bartoli F J, Antoszewski J, Faraone L 1998 US Patent 5789931

    [15]

    Petritz R L 1958 Phys. Rev. 110 1254

    [16]

    Lu H Q 1998 Ph. D. Dossertation (Shanghai:Shanghai Institute of Technical Physics) (in Chinese) [陆慧庆1998博士学位论文(上海:上海技术物理研究所)]

计量
  • 文章访问数:  3335
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-14
  • 修回日期:  2015-01-22
  • 刊出日期:  2015-06-05

离子束刻蚀碲镉汞晶体的电学特性研究

  • 1. 中国科学院上海技术物理研究所, 传感技术国家重点实验室, 上海 200083;
  • 2. 中国科学院上海技术物理研究所, 红外成像材料与器件重点实验室, 上海 200083;
  • 3. 中国科学院大学, 北京 100049

摘要: 本文利用迁移率谱分析了离子束刻蚀后的碲镉汞晶体, 发现180 μm的p型碲镉汞晶体在刻蚀后完全转为n型, 且由两个不同电学特性的电子层组成:低迁移率的表面电子层和高迁移率的体电子层. 通过分析不同温度下的迁移率谱, 表明表面电子层的迁移率不随温度而变化, 而体电子层的迁移率随温度的变化与传统的n型碲镉汞材料一致. 不同厚度下的霍尔参数表明体电子层的电学性质均匀. 另外, 通过计算得到表面电子层的浓度要比体电子层高2-3个数量级.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回