搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响

吕玲 邢木涵 薛博瑞 曹艳荣 胡培培 郑雪峰 马晓华 郝跃

引用本文:
Citation:

重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响

吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃

Effect of heavy ion radiation on low frequency noise characteristics of AlGaN/GaN high electron mobility transistors

Lü Ling, Xing Mu-Han, Xue Bo-Rui, Cao Yan-Rong, Hu Pei-Pei, Zheng Xue-Feng, Ma Xiao-Hua, Hao Yue
PDF
HTML
导出引用
  • 采用181Ta32+重离子辐射AlGaN/GaN高电子迁移率晶体管, 获得器件在重离子辐射前后的电学特性和低频噪声特性. 重离子辐射导致器件的阈值电压正向漂移、最大饱和电流减小等电学参数的退化. 微光显微测试发现辐射后器件热点数量明显增加, 引入更多缺陷. 随着辐射注量的增加, 电流噪声功率谱密度逐渐增大, 在注量为1×1010 ions/cm2重离子辐射后, 缺陷密度增大到3.19×1018 cm–3·eV–1, 不同栅压下的Hooge参数增大. 通过漏极电流噪声归一化功率谱密度随偏置电压的变化分析, 发现重离子辐射产生的缺陷会导致寄生串联电阻增大.
    AlGaN/GaN high election mobility transistor (HEMT) has important application prospects in satellite communication, radar, nuclear reactors and other extreme environments, owing to its excellent electrical performance and strong radiation resistance. Heavy ion radiation mainly causes single-event effect and displacement damage effect in AlGaN/GaN HEMT device. In this work, the displacement damage defects introduced by heavy ion radiation are analyzed in detail. With the increase of heavy ion radiation influence, more defects are introduced by displacement damage. These defects reduce the two-dimensional electron gas (2DEG) concentration through carrier capture and removal effect, and reduce the carrier mobility through scattering mechanism, resulting in gradual degradation of the electrical characteristics of the device. In this work, AlGaN/GaN high electron mobility transistors are irradiated by 181Ta32+ ions with fluences of 1×108 ions/cm2, 1×109 ions/cm2 and 1×1010 ions/cm2. The electrical characteristics, EMMI and low-frequency noise characteristics of the device before and after heavy ion radiation are measured. The results show that heavy ion radiation can lead to the degradation of electrical parameters. When the heavy ion radiation dose reaches 1×1010 ions/cm2, the electrical characteristics of the device deteriorate seriously, the threshold voltage shifts forward by 25%, and the drain saturation current deteriorates obviously. The defect locations introduced by irradiation are analyzed by EMMI test, and it is found that the number of “hot spots” increases significantly after the having been irradiated by heavy ions with a fluence of 1×1010 ions/cm2, indicating that the radiation leads to the increase of defect density and serious damage to the device. Through the noise test, it is found that with the increase of the radiation fluence, the current noise power spectral density gradually increases. When the fluence reaches 1×1010 ions/cm2, the defect density increases to 3.19×1018 cm–3·eV–1, and the Hooge parameter increases after having been irradiated by heavy ions. We believe that the radiation leads to the defect density and parasitic series resistance of AlGaN/GaN HEMT device to increases, resulting in larger Hooge parameters. Through analyzing the variation of the normalized power spectral density of the drain current noise with bias voltage, it is found that the defects caused by heavy ion radiation will cause the parasitic series resistance to increase.
      通信作者: 曹艳荣, yrcao@mail.xidian.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 12035019, 62234013)资助的课题.
      Corresponding author: Cao Yan-Rong, yrcao@mail.xidian.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant Nos. 12035019, 62234013).
    [1]

    Baliga B J 2013 Semicond. Sci. Technol. 28 074011Google Scholar

    [2]

    Amano H, Baines Y, Beam E, et al. 2018 J. Phys. D Appl. Phys. 51 163001Google Scholar

    [3]

    Nedelcescu A I, Carlone C, Houdayer A, Bardeleben H J, Cantin J L, Raymond S 2002 IEEE Trans. Nucl. Sci. 49 2733Google Scholar

    [4]

    Pearton S J, Hwang Y S, Ren F 2015 JOM 67 1601Google Scholar

    [5]

    吕玲, 张进城, 李亮, 马晓华, 曹艳荣, 郝跃 2012 物理学报 61 057202Google Scholar

    Lü L, Zhang J C, Li L, Ma X H, Cao Y R, Hao Y 2012 Acta Phys. Sin. 61 057202Google Scholar

    [6]

    郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑 2020 物理学报 69 207301Google Scholar

    Hao R J, Guo H X, Pan X Y, Lü L, Lei Z F, Li B, Zhong X L, Ouyang X P Dong S J 2020 Acta Phys. Sin. 69 207301Google Scholar

    [7]

    Jiang R, Zhang E X, McCurdy M W, Chen J, Shen X, Wang P, Fleetwood D M, Schrimpf R D, Kaun S W, Kyle E C H, Speck J S, Pantelides S T 2017 IEEE Trans. Nucl. Sci. 64 218Google Scholar

    [8]

    Pearton S J, Ren F, Patrick E, Law M E, Polyakov A Y 2016 ESC J. Solid State Sc. 5 Q35Google Scholar

    [9]

    Bazzoli S, Girard S, Ferlet-Cavrois V, Baggio J, Duhamel O 2007 9th European Conference on Radiation and its Effects on Components and Systems Deauville France, Septemper 10–14, 2007 p1

    [10]

    Kuboyama S, Maru A, Shindou H, Ikeda N, Hirao T, Abo H, Tamura T 2011 IEEE Trans. Nucl. Sci. 58 2734Google Scholar

    [11]

    Martinez M J, King M P, Baca A G, Allerman A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J, Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344Google Scholar

    [12]

    Rostewits M, Hirche K, Latti J, Jutzi E 2013 IEEE Trans. Nucl. Sci. 60 2525Google Scholar

    [13]

    Sonia G, Brunner F, Denker A, Lossy R, Mai M, Opitz-Coutureau J, Pensl G, Richter E, Schmidt J, Zeimer U, Wang L, Weyers M, Wurfl J, Trankle G 2006 IEEE Trans. Nucl. Sci. 53 3661Google Scholar

    [14]

    Lei Z, Guo H, Tang M, Chang Z, Hui C, Zhang Z 2016 16th European Conference on Radiation and its Effects on Components and Systems Bremen Germany, Septemper 19–23, 2016 p1

    [15]

    Sasaki H, Hisaka T, Kadoiwa K, Oku T, Onode S, Ohshima T, Taguchi E, Yasude H 2017 Microelectron. Reliab. 81 312Google Scholar

    [16]

    Hu P P, Liu J, Zheng S X, Maaz K, Zeng J, Zhai P F, Xu L J, Cao Y R, Duan J L, Li Z Z, Sun Y M, Ma X H 2018 Nucl. Instrum. Meth. B 430 59Google Scholar

    [17]

    Challa S R, Vega N A, Mueller N A, Kristukat C, Debray M E, Witte H, Dadgar A, Strittmatter A 2021 IEEE T. ELectron Dev. 68 24Google Scholar

    [18]

    魏峰 2007 硕士学位论文 (上海: 复旦大学)

    Wei F 2007 M. S. Thesis (Shanghai: Fudan University

    [19]

    Tartarin J G 2011 21th International Conference on Noise and Fluctyations Toronto, Canada, June 12−16, 2011 p452

    [20]

    刘宇安, 庄奕琪, 杜磊, 苏亚慧 2013 物理学报 62 140703Google Scholar

    Liu Y A, Zhuang T Q, Du L, Su Y H 2013 Acta Phys. Sin. 62 140703Google Scholar

    [21]

    Cai Y, Zhou Y, Lau K M, Chen K J 2006 IEEE T. Electron Dev. 53 2207Google Scholar

    [22]

    Sitvestri M, Uren M J, Killat N, Marcon D, Kuball M 2013 Appl. Phys. Lett. 103 043506Google Scholar

    [23]

    Ghibaudo G, Roux O, Nguyen-Duc C, Balestra F, Brini J 1991 Phys. Status Solidi 124 571Google Scholar

    [24]

    Watkins T B 1959 Proceed. Phys. Soc. 73 59Google Scholar

    [25]

    Vodapally S, Jang Y I, Kang I M, Cho I T, Lee J H, Bae Y, Ghibaudo G, Cristoloveanu S, Im K S, Lee G H 2017 IEEE Electr. Dev. Lett. 38 252Google Scholar

    [26]

    Chen Y Q, Zhang Y C, Liu Y, Liao X Y, Huang Y 2018 IEEE Trans. Electron Dev. 65 1321Google Scholar

    [27]

    Hooge F N 1994 IEEE Trans. Electron. Dev. 41 1926Google Scholar

    [28]

    Achouche M, Biblemont S 1996 Electron. Lett. 32 1326Google Scholar

  • 图 1  AlGaN/GaN HEMT器件结构示意图

    Fig. 1.  Schematic cross-section of AlGaN/GaN HEMT.

    图 2  重离子辐射前后器件阈值电压变化

    Fig. 2.  Change of threshold voltage before and after heavy ion radiaton.

    图 3  重离子辐射前后不同栅压下的最大饱和电流

    Fig. 3.  Maximum saturation current under different gate voltages before and after heavy ion radiation.

    图 4  重离子辐射前后EMMI测试结果图 (a)辐射前; (b) 1×108 ions/cm2; (c) 1×109 ions/cm2; (d) 1×1010 ions/cm2

    Fig. 4.  EMMI test results before and after heavy ion radiation: (a) Before radiation; (b) 1×108 ions/cm2; (c) 1×109 ions/cm2; (d) 1×1010 ions/cm2.

    图 5  辐射前器件在不同栅压下的噪声测试结果

    Fig. 5.  Noise test results of the devices under different gate voltages before irradiation.

    图 6  重离子辐射前后漏极电流噪声归一化功率谱密度与频率的关系

    Fig. 6.  Relationship between frequency and normalized power spectral density of drain current noise before and after heavy ion radiation.

    图 7  重离子辐射前后归一化漏极电流噪声与漏极电流的函数关系

    Fig. 7.  Normalized drain current noise as a function of drain current before and after heavy ion irradiation.

    图 8  辐射前后Hooge参数和过驱动电压的关系

    Fig. 8.  Relationship between Hooge parameters and overdrive voltage before and after heavy ion irradiation.

    图 9  归一化漏极电流噪声与过驱动栅压的函数关系 (a)辐射前; (b)辐射后

    Fig. 9.  Function relationship between normalized drain current noise and overactuated gate voltage: (a) Before radiation; (b) after radiation.

  • [1]

    Baliga B J 2013 Semicond. Sci. Technol. 28 074011Google Scholar

    [2]

    Amano H, Baines Y, Beam E, et al. 2018 J. Phys. D Appl. Phys. 51 163001Google Scholar

    [3]

    Nedelcescu A I, Carlone C, Houdayer A, Bardeleben H J, Cantin J L, Raymond S 2002 IEEE Trans. Nucl. Sci. 49 2733Google Scholar

    [4]

    Pearton S J, Hwang Y S, Ren F 2015 JOM 67 1601Google Scholar

    [5]

    吕玲, 张进城, 李亮, 马晓华, 曹艳荣, 郝跃 2012 物理学报 61 057202Google Scholar

    Lü L, Zhang J C, Li L, Ma X H, Cao Y R, Hao Y 2012 Acta Phys. Sin. 61 057202Google Scholar

    [6]

    郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑 2020 物理学报 69 207301Google Scholar

    Hao R J, Guo H X, Pan X Y, Lü L, Lei Z F, Li B, Zhong X L, Ouyang X P Dong S J 2020 Acta Phys. Sin. 69 207301Google Scholar

    [7]

    Jiang R, Zhang E X, McCurdy M W, Chen J, Shen X, Wang P, Fleetwood D M, Schrimpf R D, Kaun S W, Kyle E C H, Speck J S, Pantelides S T 2017 IEEE Trans. Nucl. Sci. 64 218Google Scholar

    [8]

    Pearton S J, Ren F, Patrick E, Law M E, Polyakov A Y 2016 ESC J. Solid State Sc. 5 Q35Google Scholar

    [9]

    Bazzoli S, Girard S, Ferlet-Cavrois V, Baggio J, Duhamel O 2007 9th European Conference on Radiation and its Effects on Components and Systems Deauville France, Septemper 10–14, 2007 p1

    [10]

    Kuboyama S, Maru A, Shindou H, Ikeda N, Hirao T, Abo H, Tamura T 2011 IEEE Trans. Nucl. Sci. 58 2734Google Scholar

    [11]

    Martinez M J, King M P, Baca A G, Allerman A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J, Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344Google Scholar

    [12]

    Rostewits M, Hirche K, Latti J, Jutzi E 2013 IEEE Trans. Nucl. Sci. 60 2525Google Scholar

    [13]

    Sonia G, Brunner F, Denker A, Lossy R, Mai M, Opitz-Coutureau J, Pensl G, Richter E, Schmidt J, Zeimer U, Wang L, Weyers M, Wurfl J, Trankle G 2006 IEEE Trans. Nucl. Sci. 53 3661Google Scholar

    [14]

    Lei Z, Guo H, Tang M, Chang Z, Hui C, Zhang Z 2016 16th European Conference on Radiation and its Effects on Components and Systems Bremen Germany, Septemper 19–23, 2016 p1

    [15]

    Sasaki H, Hisaka T, Kadoiwa K, Oku T, Onode S, Ohshima T, Taguchi E, Yasude H 2017 Microelectron. Reliab. 81 312Google Scholar

    [16]

    Hu P P, Liu J, Zheng S X, Maaz K, Zeng J, Zhai P F, Xu L J, Cao Y R, Duan J L, Li Z Z, Sun Y M, Ma X H 2018 Nucl. Instrum. Meth. B 430 59Google Scholar

    [17]

    Challa S R, Vega N A, Mueller N A, Kristukat C, Debray M E, Witte H, Dadgar A, Strittmatter A 2021 IEEE T. ELectron Dev. 68 24Google Scholar

    [18]

    魏峰 2007 硕士学位论文 (上海: 复旦大学)

    Wei F 2007 M. S. Thesis (Shanghai: Fudan University

    [19]

    Tartarin J G 2011 21th International Conference on Noise and Fluctyations Toronto, Canada, June 12−16, 2011 p452

    [20]

    刘宇安, 庄奕琪, 杜磊, 苏亚慧 2013 物理学报 62 140703Google Scholar

    Liu Y A, Zhuang T Q, Du L, Su Y H 2013 Acta Phys. Sin. 62 140703Google Scholar

    [21]

    Cai Y, Zhou Y, Lau K M, Chen K J 2006 IEEE T. Electron Dev. 53 2207Google Scholar

    [22]

    Sitvestri M, Uren M J, Killat N, Marcon D, Kuball M 2013 Appl. Phys. Lett. 103 043506Google Scholar

    [23]

    Ghibaudo G, Roux O, Nguyen-Duc C, Balestra F, Brini J 1991 Phys. Status Solidi 124 571Google Scholar

    [24]

    Watkins T B 1959 Proceed. Phys. Soc. 73 59Google Scholar

    [25]

    Vodapally S, Jang Y I, Kang I M, Cho I T, Lee J H, Bae Y, Ghibaudo G, Cristoloveanu S, Im K S, Lee G H 2017 IEEE Electr. Dev. Lett. 38 252Google Scholar

    [26]

    Chen Y Q, Zhang Y C, Liu Y, Liao X Y, Huang Y 2018 IEEE Trans. Electron Dev. 65 1321Google Scholar

    [27]

    Hooge F N 1994 IEEE Trans. Electron. Dev. 41 1926Google Scholar

    [28]

    Achouche M, Biblemont S 1996 Electron. Lett. 32 1326Google Scholar

  • [1] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型. 物理学报, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [2] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [3] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为. 物理学报, 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [4] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析. 物理学报, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [5] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性. 物理学报, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [6] 王党会, 许天旱. 蓝紫光发光二极管中的低频产生-复合噪声行为研究. 物理学报, 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [7] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理. 物理学报, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [8] 刘远, 何红宇, 陈荣盛, 李斌, 恩云飞, 陈义强. 氢化非晶硅薄膜晶体管的低频噪声特性. 物理学报, 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [9] 朱彦旭, 宋会会, 王岳华, 李赉龙, 石栋. 氮化镓基感光栅极高电子迁移率晶体管器件设计与制备. 物理学报, 2017, 66(24): 247203. doi: 10.7498/aps.66.247203
    [10] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [11] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征. 物理学报, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [12] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [13] 刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣. 非晶铟锌氧化物薄膜晶体管的低频噪声特性与分析. 物理学报, 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [14] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [15] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [16] 刘玉栋, 杜磊, 孙鹏, 陈文豪. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响. 物理学报, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [17] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [18] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究. 物理学报, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [19] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] 吕永良, 周世平, 徐得名. 光照下高电子迁移率晶体管特性分析. 物理学报, 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
计量
  • 文章访问数:  2943
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-08
  • 修回日期:  2023-10-30
  • 上网日期:  2023-11-02
  • 刊出日期:  2024-02-05

/

返回文章
返回