搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析

朱宇博 徐华 李民 徐苗 彭俊彪

引用本文:
Citation:

镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析

朱宇博, 徐华, 李民, 徐苗, 彭俊彪

Analysis of low frequency noise characteristics of praseodymium doped indium gallium oxide thin film transistor

Zhu Yu-Bo, Xu Hua, Li Min, Xu Miao, Peng Jun-Biao
PDF
HTML
导出引用
  • 本文研究了镨掺杂铟镓氧化物 (PrIGO)薄膜晶体管 (thin film transistor, TFT) 的低频噪声特性. 根据低频噪声测试分析结果得知: IGO-TFT和PrIGO-TFT器件沟道电流的功率谱密度与频率的关系均满足1/fγ (γ ≈ 0.8) 的关系, 符合载流子数涨落模型. 通过研究不同沟道长度对器件低频噪声的影响, 明确了器件的噪声主要来源于沟道区而非源/漏接触区. 基于载流子数涨落模型, 提取界面处的缺陷态, 发现Pr元素掺杂会在IGO体系中诱导出缺陷态. 而该缺陷态可以作为电离氧空位和电子的复合中心, 进而改善氧化物TFT器件中由氧空位所导致的光照负偏压 (negative bias illumination stability, NBIS) 稳定性问题.
    Metal oxide thin film transistors (MOTFTs) have been extensively investigated in the display industry because of their attractive characteristics, including high performances, low processing temperatures, and simple fabrication. However, under the actual working condition, the characteristics of TFTs are easily affected by the light irradiation caused the negative gate bias stress (NBIS). Therefore, the NBIS stability of MOTFT is a crucial issue that must be solved before their commercialization into an optoelectronic device. In this article, praseodymium-doped indium gallium oxide (PrIGO) is employed as the channel layer of thin film transistor (TFT). The TFTs with Pr doping exhibit a remarkable enhancement in NBIS stability. The structure and chemical composition of PrIGO film are analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. Besides, to further explore the mechanism for the improvement of NBIS stability, the low-frequency noise characteristics of IGO-TFT device and PrIGO-TFT device are studied. According to the low frequency noise characterization and analysis results, the correspondence between the normalized drain current noise power spectral density($ S_{\rm ID}/I_{\rm DS}^2 $) and frequency shows 1/fγ (γ ≈ 0.8) low frequency noise behavior for IGO-TFT device and PrIGO-TFT device. In addition, by studying the influences of different channel lengths on the low frequency noise of the IGO-TFT and PrIGO-TFT devices, it can be concluded that the low frequency noise of the device comes mainly from the channel region rather than from the source/drain contact region. In the linear region of the IGO-TFT device and PrIGO-TFT device, according to the linear fitting of the $ S_{\rm ID}/I_{\rm DS}^2 $ versus the overdrive voltage (VGS Vth), it is proved that the low frequency noise of the IGO-TFT device and the PrIGO-TFT device are mainly affected by the carrier number fluctuation model. Finally, based on the carrier number fluctuation model, the defect state density at the interface between active layer and gate insulating layer is extracted to be 7.76 × 1017 cm–3·eV–1 and 9.55 × 1017 cm–3·eV–1 for IGO-TFT and PrIGO-TFT devices, respectively. We speculate that the Pr element can induce defect states in the IGO system, and the trap states induced by Pr ions facilitate the capture of free electrons by positively charged oxygen vacancies, which lead the photo-induced carrier in conduction band to be suppressed.
      通信作者: 徐华, xuhua@newvision-cn.com ; 彭俊彪, psjbpeng@scut.edu.cn
    • 基金项目: 广东省重点研发项目(批准号: 2019B010924004, 2019B010934001, 2019B010925001)、广东省国际科技合作计划(批准号: 2018A050506022)和季华实验室科研项目(批准号: X190221TF191)资助的课题
      Corresponding author: Xu Hua, xuhua@newvision-cn.com ; Peng Jun-Biao, psjbpeng@scut.edu.cn
    • Funds: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 2019B010924004, 2019B010934001, 2019B010925001), the Guangdong Provincial International Science & Technology Cooperation Program, China (Grant No. 2018A050506022), and Ji Hua Laboratory Scientific Research Project, China (Grant No. X190221TF191)
    [1]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488Google Scholar

    [2]

    Ebata K, Tomai S, Tsuruma Y, Iitsuka T, Matsuzaki S, Yano K 2012 Appl. Phys. Express 5 11102Google Scholar

    [3]

    Xiao P, Dong T, Lan L, Lin Z, Song W, Song E, Sun S, Li Y, Gao P, Luo D, Xu M, Peng J 2016 Phys. Status Solidi RRL 10 493Google Scholar

    [4]

    Park H, Bae J, Kang H, Kim D H, Jung P, Park H, Lee S, Bae J U, Yoon S Y, Kang I 2019 SID Int. Symp. Digest Techn. Papers 50 1222Google Scholar

    [5]

    Cheng Y, Chang S, Chang S 2019 Mater. Res. Express 6 106445Google Scholar

    [6]

    Chen T, Chang T, Hsieh T, Tsai C, Chen S, Lin C, Hung M, Tu C, Chang J, Chen P 2010 Appl. Phys. Lett. 97 192103Google Scholar

    [7]

    Chowdhury M D H, Migliorato P, Jang J 2010 Appl. Phys. Lett. 97 173506Google Scholar

    [8]

    Ryu B, Noh H, Choi E, Chang K J 2010 Appl. Phys. Lett. 97 22108Google Scholar

    [9]

    Xu H, Xu M, Li M, Chen Z, Zou J, Wu W, Qiao X, Tao H, Wang L, Ning H, Ma D, Peng J 2019 ACS Appl. Mater. Interfaces. 11 5232Google Scholar

    [10]

    Fung T, Baek G, Kanicki J 2010 J. Appl. Phys. 108 74518Google Scholar

    [11]

    Wang L, Liu Y, Geng K, Chen Y, En Y 2018 Chin. Phys. B 27 68504Google Scholar

    [12]

    Cho I, Cheong W, Hwang C, Lee J, Kwon H, Lee J 2009 IEEE Electron Device Lett. 30 828Google Scholar

    [13]

    Song A, Javaid K, Liang Y, Wu W, Yu J, Liang L, Zhang H, Lan L, Chang T, Cao H 2018 Phys. Status Solidi RRL 12 1800034Google Scholar

    [14]

    王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞 2016 物理学报 65 128501Google Scholar

    Wang J, Liu Y, Liu Y R, Wu W J, Luo X Y, Liu K, Li B, En Y F 2016 Acta Phys. Sin. 65 128501Google Scholar

    [15]

    刘远, 何红宇, 陈荣盛, 李斌, 恩云飞, 陈义强 2017 物理学报 66 237101Google Scholar

    Liu Y, He H Y, Chen R S, Li B, En Y F, Chen Y Q 2017 Acta Phys. Sin. 66 237101Google Scholar

    [16]

    Deen M J, Rumyantsev S L, Landheer D, Xu D X 2000 Appl. Phys. Lett. 77 2234Google Scholar

    [17]

    Choi H, Jeon S, Kim H, Shin J, Kim C, Chung U 2011 IEEE Electron Device Lett. 32 1083Google Scholar

    [18]

    Liu Y, He H, Chen R, En Y, Li B, Chen Y 2018 IEEE J. Electron Devi. 6 271Google Scholar

    [19]

    Kim S, Jeon Y, Lee J, Ahn B D, Park S Y, Park J, Kim J H, Park J, Kim D M, Kim D H 2010 IEEE Electron Device Lett. 31 1236

    [20]

    Vandamme L K J, Hooge F N 2008 IEEE Trans. Electron Devices 55 3070Google Scholar

    [21]

    Cai M, Yao R 2017 J. Appl. Phys. 122 154503Google Scholar

    [22]

    Ghibaudo G, Roux O, Nguyen-Duc C, Balestra F, Brini J 1991 Phys. Status Solidi A 124 571Google Scholar

    [23]

    Petit L, Svane A, Szotek Z, Temmerman W M 2005 Phys. Rev. B 72 205118Google Scholar

  • 图 1  IGO-TFT和PrIGO-TFT (a) 结构示意图; (b) 转移特性曲线; IGO-TFT (c) 和PrIGO-TFT (d) NBIS稳定性

    Fig. 1.  (a) Cross section views and (b) transfer characteristics of IGO-TFT and PrIGO-TFT; NBIS stability of (c) IGO-TFT and (d) PrIGO-TFT.

    图 2  IGO和PrIGO薄膜 (a) X射线衍射谱图; (b) 紫外-可见透射光谱图 (插图为 (αhv)2hv变化曲线); (c) X射线光电子能谱图 (插图为局部放大图)

    Fig. 2.  (a) X-ray diffraction spectra, (b) UV-visible transmission spectra (the inset shows the curve of (αhv)2 varying with hv) and (c) X-ray photoelectron spectroscopy (the inset is a partial enlarged view) of IGO and PrIGO thin film.

    图 3  IGO-TFT和PrIGO-TFT归一化噪声功率谱密度随频率的变化

    Fig. 3.  Normalized noise power spectral densities (SID/I2DS) versus frequency in the IGO-TFT and PrIGO-TFT.

    图 4  不同沟道长度的IGO-TFT (a) 和PrIGO-TFT (b) SID/I2DS随频率的变化

    Fig. 4.  SID/I2DS versus frequency in the (a) IGO-TFT and (b) PrIGO-TFT with different channel length.

    图 5  IGO-TFT和PrIGO-TFT (a) SID/I2DS随沟道长度的变化; (b) SID/IDS2随过驱动电压VGSVth的变化

    Fig. 5.  SID/I2DS versus (a) channel length and (b) overdrive voltage (VGSVth) in the IGO-TFT and PrIGO-TFT.

    图 6  IGO-TFT (a) 和PrIGO-TFT (b) SID/I2DS随沟道电流的变化

    Fig. 6.  SID/I2DS versus drain current in the (a) IGO-TFT and (b) PrIGO-TFT.

    表 1  IGO和PrIGO薄膜中各元素的百分比含量

    Table 1.  Percentage contents of each element in IGO and PrIGO films.

    Element/at.%PrInGaO
    PrIGO2.8628.7615.1051.89
    IGO30.9315.5151.85
    下载: 导出CSV
  • [1]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488Google Scholar

    [2]

    Ebata K, Tomai S, Tsuruma Y, Iitsuka T, Matsuzaki S, Yano K 2012 Appl. Phys. Express 5 11102Google Scholar

    [3]

    Xiao P, Dong T, Lan L, Lin Z, Song W, Song E, Sun S, Li Y, Gao P, Luo D, Xu M, Peng J 2016 Phys. Status Solidi RRL 10 493Google Scholar

    [4]

    Park H, Bae J, Kang H, Kim D H, Jung P, Park H, Lee S, Bae J U, Yoon S Y, Kang I 2019 SID Int. Symp. Digest Techn. Papers 50 1222Google Scholar

    [5]

    Cheng Y, Chang S, Chang S 2019 Mater. Res. Express 6 106445Google Scholar

    [6]

    Chen T, Chang T, Hsieh T, Tsai C, Chen S, Lin C, Hung M, Tu C, Chang J, Chen P 2010 Appl. Phys. Lett. 97 192103Google Scholar

    [7]

    Chowdhury M D H, Migliorato P, Jang J 2010 Appl. Phys. Lett. 97 173506Google Scholar

    [8]

    Ryu B, Noh H, Choi E, Chang K J 2010 Appl. Phys. Lett. 97 22108Google Scholar

    [9]

    Xu H, Xu M, Li M, Chen Z, Zou J, Wu W, Qiao X, Tao H, Wang L, Ning H, Ma D, Peng J 2019 ACS Appl. Mater. Interfaces. 11 5232Google Scholar

    [10]

    Fung T, Baek G, Kanicki J 2010 J. Appl. Phys. 108 74518Google Scholar

    [11]

    Wang L, Liu Y, Geng K, Chen Y, En Y 2018 Chin. Phys. B 27 68504Google Scholar

    [12]

    Cho I, Cheong W, Hwang C, Lee J, Kwon H, Lee J 2009 IEEE Electron Device Lett. 30 828Google Scholar

    [13]

    Song A, Javaid K, Liang Y, Wu W, Yu J, Liang L, Zhang H, Lan L, Chang T, Cao H 2018 Phys. Status Solidi RRL 12 1800034Google Scholar

    [14]

    王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞 2016 物理学报 65 128501Google Scholar

    Wang J, Liu Y, Liu Y R, Wu W J, Luo X Y, Liu K, Li B, En Y F 2016 Acta Phys. Sin. 65 128501Google Scholar

    [15]

    刘远, 何红宇, 陈荣盛, 李斌, 恩云飞, 陈义强 2017 物理学报 66 237101Google Scholar

    Liu Y, He H Y, Chen R S, Li B, En Y F, Chen Y Q 2017 Acta Phys. Sin. 66 237101Google Scholar

    [16]

    Deen M J, Rumyantsev S L, Landheer D, Xu D X 2000 Appl. Phys. Lett. 77 2234Google Scholar

    [17]

    Choi H, Jeon S, Kim H, Shin J, Kim C, Chung U 2011 IEEE Electron Device Lett. 32 1083Google Scholar

    [18]

    Liu Y, He H, Chen R, En Y, Li B, Chen Y 2018 IEEE J. Electron Devi. 6 271Google Scholar

    [19]

    Kim S, Jeon Y, Lee J, Ahn B D, Park S Y, Park J, Kim J H, Park J, Kim D M, Kim D H 2010 IEEE Electron Device Lett. 31 1236

    [20]

    Vandamme L K J, Hooge F N 2008 IEEE Trans. Electron Devices 55 3070Google Scholar

    [21]

    Cai M, Yao R 2017 J. Appl. Phys. 122 154503Google Scholar

    [22]

    Ghibaudo G, Roux O, Nguyen-Duc C, Balestra F, Brini J 1991 Phys. Status Solidi A 124 571Google Scholar

    [23]

    Petit L, Svane A, Szotek Z, Temmerman W M 2005 Phys. Rev. B 72 205118Google Scholar

  • [1] 王俊, 蔡飞燕, 张汝钧, 李永川, 周伟, 李飞, 邓科, 郑海荣. 基于压电声子晶体板波声场的微粒操控. 物理学报, 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231886
    [2] 蒋东镔, 张颖, 姜大朋, 朱斌, 李纲, 孙立, 黄征, 卢峰, 谢娜, 周凯南, 粟敬钦. Nd, Gd:SrF2晶体材料在宽带放大中的光谱增益特性. 物理学报, 2023, 72(22): 224208. doi: 10.7498/aps.72.20230972
    [3] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [4] 戚炜恒, 王震, 李翔飞, 禹日成, 王焕华. 外延BaMoO3, BaMoO4薄膜的生长行为. 物理学报, 2022, 71(17): 178103. doi: 10.7498/aps.71.20220736
    [5] 张亚菊, 谢忠帅, 郑海务, 袁国亮. Au-BiFeO3纳米复合薄膜的电学和光伏性能优化. 物理学报, 2020, 69(12): 127709. doi: 10.7498/aps.69.20200309
    [6] 王庆玲, 迪拉热·哈力木拉提, 沈玉玲, 艾尔肯·斯地克. 多面体共替代对Sr2(Al1–xMgx)(Al1–xSi1+x)O7: Eu2+晶体结构和发光颜色的影响. 物理学报, 2019, 68(10): 100701. doi: 10.7498/aps.68.20182272
    [7] 李酽, 张琳彬, 李娇, 连晓雪, 朱俊武. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析. 物理学报, 2019, 68(7): 070701. doi: 10.7498/aps.68.20181961
计量
  • 文章访问数:  3993
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-25
  • 修回日期:  2021-03-19
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回