搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N 2O处理对背沟刻蚀金属氧化物薄膜晶体管性能的影响

徐华 刘京栋 蔡炜 李民 徐苗 陶洪 邹建华 彭俊彪

引用本文:
Citation:

N 2O处理对背沟刻蚀金属氧化物薄膜晶体管性能的影响

徐华, 刘京栋, 蔡炜, 李民, 徐苗, 陶洪, 邹建华, 彭俊彪

Effect of N 2O treatment on performance of back channel etched metal oxide thin film transistors

Xu Hua, Liu Jing-Dong, Cai Wei, Li Min, Xu Miao, Tao Hong, Zou Jian-Hua, Peng Jun-Biao
PDF
HTML
导出引用
  • 通过采用稀土元素镨掺杂铟锡锌氧化物半导体作为薄膜晶体管沟道层, 成功实现了基于铝酸的湿法背沟道刻蚀薄膜晶体管的制备. 研究了N 2O等离子体处理对薄膜晶体管背沟道界面的影响, 对其处理功率和时间对器件性能的影响做了具体研究. 结果表明, 在一定的功率和时间处理下能获得良好的器件性能, 所制备的器件具有良好的正向偏压热稳定性和光照条件下负向偏压热稳定性. 高分辨透射电镜结果显示, 该非晶结构的金属氧化物半导体材料可以有效抵抗铝酸的刻蚀, 未发现明显的成分偏析现象. 进一步的X射线光电能谱测试表明, N 2O等离子体处理能在界面处形成一个富氧、低载流子浓度的界面层. 其一方面可以有效抵抗器件在沉积氧化硅钝化层时等离子体对背沟道的损伤; 另一方面作为氢的钝化体, 抑制了低能级施主态氢的产生, 为低成本、高效的薄膜晶体管性能优化方式提供了重要参考.
    In this paper, the rare earth element praseodymium-doped indium tin zinc oxide semiconductor is used as the channel layer of the thin film transistor, and the aluminum oxide-based wet back channel etched thin film transistor is successfully prepared. The effect of N 2O plasma treatment on the back-channel interface of thin film transistor is studied, and the effect of treatment power and time on device performance are studied in detail. The results show that the good device performance can be obtained under certain power and time treatment, and the prepared device has good thermal stability of positive bias and negative bias under light conditions. The results from high-resolution transmission electron microscopy show that the amorphous structure of the metal oxide semiconductor material can effectively resist the wet etchant, and that no obvious component segregation phenomenon is found. Further, X-ray photoelectric spectroscopy tests show that N 2O plasma treatment can form an oxygen-rich, low-carrier-concentration interface layer at the interface. On the one hand, it can effectively resist the damage of the back channel caused by the plasma of plasma enhanced chemical vapor deposition (PECVD), and on the other hand, it acts as a passivation body of hydrogen from PECVD plasma, suppressing the generation of low-level donor state of hydrogen. This study provides an important reference for low-cost, high-efficiency thin film transistor performance optimization methods.
      通信作者: 陶洪, taohong@newvision-cn.com
    • 基金项目: 广东省重点研发项目(批准号: 2019B010924004, 2019B010934001, 2019B010925001)、广东省国际科技合作计划(批准号: 2018A050506022)和季华实验室科研项目(批准号: X190221TF190)资助的课题
      Corresponding author: Tao Hong, taohong@newvision-cn.com
    • Funds: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant Nos. 2019B010924004, 2019B010934001, 2019B010925001), the International Science & Technology Cooperation Program of Guangdong Province, China (Grant No. 2018A050506022), and the Scientific Research Project of Jihua Laboratory, China (Grant No. X190221TF190)
    [1]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488Google Scholar

    [2]

    Hoffman R L, Norris B J, Wager J F 2003 Appl. Phys. Lett. 82 733Google Scholar

    [3]

    李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华 2013 物理学报 62 108503Google Scholar

    Li X F, Xin E L, Shi J F, Chen L L, Zhang C Y, ZhangJ H 2013 Acta Phys. Sin. 62 108503Google Scholar

    [4]

    Fortunato E M C, Barquinha P M C, Pimentel A C M B G, Gonçalves A M F, Marques A J S, Pereira L M N, Martins R F P 2005 Adv. Mater. 17 590Google Scholar

    [5]

    Chung C Y, Zhu B, Greene R G, Thompson M O, Ast D G 2015 Appl. Phys. Lett. 107 183503Google Scholar

    [6]

    Song J I, Park J S, Kim H, Heo Y W, Kim G M, Choi B D 2007 Appl. Phys. Lett. 90 022106Google Scholar

    [7]

    Lan L F, Xiong N N, Xiao P, Li M, Xu H, Yao R H, Wen S S, Peng J B 2013 Appl. Phys. Lett. 102 242102Google Scholar

    [8]

    Xu H, Xu M, Li M, Chen Z K, Zou J H, Wu W, Qiao X, Tao H, Wang L, Ning H L, Ma D G, Peng J B 2019 ACS Appl. Mater. Interfaces 11 5232Google Scholar

    [9]

    Kim M, Jeong J H, Lee H J, Ahn T K, Shin H S, Park J, Jeong J K, Mo Y, Kim H D 2007 Appl. Phys. Lett. 90 212114Google Scholar

    [10]

    Cho S H, Ko J B, Ryu M K, Yang J H, Yeom H I, Lim S K, Hwang C, Park S H K 2015 IEEE Trans. Electron Devices 62 3653Google Scholar

    [11]

    Park J, Song I, Kim S, Kim S, Kim C, Lee J, Lee H, Lee E, Yin H, Kim K, Kwon K, Park Y 2008 Appl. Phys. Lett. 93 053501Google Scholar

    [12]

    Xu H, Lan L F, Xu M, Zou J H, Wang L, Wang D, Peng J B 2011 Appl. Phys. Lett. 99 253501Google Scholar

    [13]

    Ge S M, Li S, Chen S J, Kong X Y, Meng Y H, Shi W, Shi L, Wu W, Liu X, Gan Q, Zhao Y, Zhang C, Chiu C, Lee C Y 2017 SID Symposium Digest of Technical Papers 48 592Google Scholar

    [14]

    Park J, Kim S, Kim C, Kim S, Song I, Yin H, Kim K, Lee S, Hong K, Lee J, Jung J, Lee E, Kwon K, Park Y 2008 Appl. Phys. Lett. 93 053505Google Scholar

    [15]

    Tsai C T, Chang T C, Chen S C, Lo I, Tsao S W, Hung M C, Chang J J, Wu C Y, Huang C Y 2010 Appl. Phys. Lett. 96 242105Google Scholar

    [16]

    Park J C, Ahn S E, Lee H N 2013 ACS Appl. Mater. Interfaces 5 12262Google Scholar

    [17]

    Sheng J, Park J, Choi D W, Lim J, Park J S 2016 ACS Appl. Mater. Interfaces 8 31136Google Scholar

    [18]

    Nahm H H, Kim Y S, Kim D H 2012 Phys. Status Solidi B 249 1277Google Scholar

    [19]

    Zhu Y B, Xu H, Xu M, Li M, Zou J H, Tao H, Wang L, Peng J B 2021 Phys. Status Solidi A doi: 10.1002/pssa.202000812

    [20]

    朱宇博, 徐华, 李民, 徐苗, 彭俊彪 2021 物理学报 70 168501Google Scholar

    Zhu Y B, Xu H, Li M, Xu M, Peng J B 2021 Acta Phys. Sin. 70 168501Google Scholar

    [21]

    Fortunato E, Barquinha P, Martins R 2012 Adv. Mater. 24 2945Google Scholar

    [22]

    Ide K, Nomura K, Hosono H, Kamiya T 2019 Phys. Status Solidi A 216 1800372Google Scholar

    [23]

    Remashan K, Hwang D K, Park S D, Bae J W, Yeom G Y, Park S J, Jang J H 2007 Electrochem. Solid State Lett. 11 H55

    [24]

    Kang Y, Ahn B D, Song J H, Mo Y G, Nahm H H, Han S, Jeong J K 2015 Adv. Electron. Mater. 1 1400006Google Scholar

    [25]

    Son K S, Kim T S, Jung J S, Ryu M K, Park K B, Yoo B W, Park K C, Kwon J Y, Lee S Y, Kim J M 2008 Electrochem. Solid State Lett. 12 H26

  • 图 1  PITZO-TFT (a)结构示意图; (b) 器件显微镜照片

    Fig. 1.  (a) Structure diagram and (b) microscope photo of the PITZO-TFT.

    图 2  (a)不同功率和 (b) 不同时间的N 2O处理对器件转移特性的影响; Device C (c) 不同源漏电压下的转移特性曲线和 (d) 输出特性曲线

    Fig. 2.  Influence of different (a) power and (b) time treatment of N 2O on the transfer characteristics of the device; (c) transfer characteristic curve under different source and drain voltages and (d) output characteristic curve of Device C.

    图 3  (a) Device C和 (b) Device E 器件在PBTS条件下的稳定性; (c) Device C和 (d) Device E 器件在NBITS条件下的稳定性

    Fig. 3.  Stability of (a) Device C and (b) Device E under PBTS conditions; stability of (c) Device C and (d) Device E under NBITS conditions.

    图 4  TFT器件的高分辨透射电镜谱图

    Fig. 4.  High-resolution transmission electron microscope spectra of TFT devices.

    图 5  PITZO薄膜的深度剖析X射线光电子能谱图 (a) 无N 2O处理; (b) N 2O处理后

    Fig. 5.  X-ray photoelectron spectroscopy depth-profile of PITZO films: (a) Without N 2O treatment; (b) with N 2O treatment.

    图 6  PITZO薄膜在 (a) 无N 2O处理和 (b) N 2O处理后O 1s的XPS谱图随刻蚀时间的关系; Ar离子枪刻蚀前 (c) 无N 2O处理和 (d) N 2O处理后薄膜O 1s的拟合XPS图谱

    Fig. 6.  The O 1s XPS spectra of the PITZO films (a) without N 2O and (b) with N 2O treatment related with the Ar ion gun etching time. Fitted O 1s XPS of the PITZO thin films (c) without N 2O and (d) with N 2O treatment before Ar ion gun etching.

    表 1  各器件性能参数表

    Table 1.  Electronic parameters of each TFTs.

    No. V th/V μ sat/(cm 2·V –1·s –1) SS/(V·decade –1) I on- I off
    Device A
    Device B
    Device C 0.7 22.4 0.17 10 8
    Device D
    Device E 0.4 20.6 0.22 10 8
    下载: 导出CSV
  • [1]

    Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488Google Scholar

    [2]

    Hoffman R L, Norris B J, Wager J F 2003 Appl. Phys. Lett. 82 733Google Scholar

    [3]

    李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华 2013 物理学报 62 108503Google Scholar

    Li X F, Xin E L, Shi J F, Chen L L, Zhang C Y, ZhangJ H 2013 Acta Phys. Sin. 62 108503Google Scholar

    [4]

    Fortunato E M C, Barquinha P M C, Pimentel A C M B G, Gonçalves A M F, Marques A J S, Pereira L M N, Martins R F P 2005 Adv. Mater. 17 590Google Scholar

    [5]

    Chung C Y, Zhu B, Greene R G, Thompson M O, Ast D G 2015 Appl. Phys. Lett. 107 183503Google Scholar

    [6]

    Song J I, Park J S, Kim H, Heo Y W, Kim G M, Choi B D 2007 Appl. Phys. Lett. 90 022106Google Scholar

    [7]

    Lan L F, Xiong N N, Xiao P, Li M, Xu H, Yao R H, Wen S S, Peng J B 2013 Appl. Phys. Lett. 102 242102Google Scholar

    [8]

    Xu H, Xu M, Li M, Chen Z K, Zou J H, Wu W, Qiao X, Tao H, Wang L, Ning H L, Ma D G, Peng J B 2019 ACS Appl. Mater. Interfaces 11 5232Google Scholar

    [9]

    Kim M, Jeong J H, Lee H J, Ahn T K, Shin H S, Park J, Jeong J K, Mo Y, Kim H D 2007 Appl. Phys. Lett. 90 212114Google Scholar

    [10]

    Cho S H, Ko J B, Ryu M K, Yang J H, Yeom H I, Lim S K, Hwang C, Park S H K 2015 IEEE Trans. Electron Devices 62 3653Google Scholar

    [11]

    Park J, Song I, Kim S, Kim S, Kim C, Lee J, Lee H, Lee E, Yin H, Kim K, Kwon K, Park Y 2008 Appl. Phys. Lett. 93 053501Google Scholar

    [12]

    Xu H, Lan L F, Xu M, Zou J H, Wang L, Wang D, Peng J B 2011 Appl. Phys. Lett. 99 253501Google Scholar

    [13]

    Ge S M, Li S, Chen S J, Kong X Y, Meng Y H, Shi W, Shi L, Wu W, Liu X, Gan Q, Zhao Y, Zhang C, Chiu C, Lee C Y 2017 SID Symposium Digest of Technical Papers 48 592Google Scholar

    [14]

    Park J, Kim S, Kim C, Kim S, Song I, Yin H, Kim K, Lee S, Hong K, Lee J, Jung J, Lee E, Kwon K, Park Y 2008 Appl. Phys. Lett. 93 053505Google Scholar

    [15]

    Tsai C T, Chang T C, Chen S C, Lo I, Tsao S W, Hung M C, Chang J J, Wu C Y, Huang C Y 2010 Appl. Phys. Lett. 96 242105Google Scholar

    [16]

    Park J C, Ahn S E, Lee H N 2013 ACS Appl. Mater. Interfaces 5 12262Google Scholar

    [17]

    Sheng J, Park J, Choi D W, Lim J, Park J S 2016 ACS Appl. Mater. Interfaces 8 31136Google Scholar

    [18]

    Nahm H H, Kim Y S, Kim D H 2012 Phys. Status Solidi B 249 1277Google Scholar

    [19]

    Zhu Y B, Xu H, Xu M, Li M, Zou J H, Tao H, Wang L, Peng J B 2021 Phys. Status Solidi A doi: 10.1002/pssa.202000812

    [20]

    朱宇博, 徐华, 李民, 徐苗, 彭俊彪 2021 物理学报 70 168501Google Scholar

    Zhu Y B, Xu H, Li M, Xu M, Peng J B 2021 Acta Phys. Sin. 70 168501Google Scholar

    [21]

    Fortunato E, Barquinha P, Martins R 2012 Adv. Mater. 24 2945Google Scholar

    [22]

    Ide K, Nomura K, Hosono H, Kamiya T 2019 Phys. Status Solidi A 216 1800372Google Scholar

    [23]

    Remashan K, Hwang D K, Park S D, Bae J W, Yeom G Y, Park S J, Jang J H 2007 Electrochem. Solid State Lett. 11 H55

    [24]

    Kang Y, Ahn B D, Song J H, Mo Y G, Nahm H H, Han S, Jeong J K 2015 Adv. Electron. Mater. 1 1400006Google Scholar

    [25]

    Son K S, Kim T S, Jung J S, Ryu M K, Park K B, Yoo B W, Park K C, Kwon J Y, Lee S Y, Kim J M 2008 Electrochem. Solid State Lett. 12 H26

  • [1] 王琛, 温盼, 彭聪, 徐萌, 陈龙龙, 李喜峰, 张建华. 钝化层对背沟道刻蚀型IGZO薄膜晶体管的影响. 物理学报, 2023, 72(8): 087302. doi: 10.7498/aps.72.20222272
    [2] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析. 物理学报, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [3] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展. 物理学报, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [4] 邵龑, 丁士进. 氢元素对铟镓锌氧化物薄膜晶体管性能的影响. 物理学报, 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [5] 兰林锋, 张鹏, 彭俊彪. 氧化物薄膜晶体管研究进展. 物理学报, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [6] 王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞. 铟锌氧化物薄膜晶体管局域态分布的提取方法. 物理学报, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [7] 朱乐永, 高娅娜, 张建华, 李喜峰. 溶胶凝胶法制备以HfO2为绝缘层和ZITO为有源层的高迁移率薄膜晶体管. 物理学报, 2015, 64(16): 168501. doi: 10.7498/aps.64.168501
    [8] 宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊彪. 铜-钼源漏电极对非晶氧化铟镓锌薄膜晶体管性能的改善. 物理学报, 2015, 64(12): 126103. doi: 10.7498/aps.64.126103
    [9] 高娅娜, 李喜峰, 张建华. 溶胶凝胶法制备高性能锆铝氧化物作为绝缘层的薄膜晶体管. 物理学报, 2014, 63(11): 118502. doi: 10.7498/aps.63.118502
    [10] 刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣. 非晶铟锌氧化物薄膜晶体管的低频噪声特性与分析. 物理学报, 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [11] 徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪. 源漏电极的制备对氧化物薄膜晶体管性能的影响. 物理学报, 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [12] 张耕铭, 郭立强, 赵孔胜, 颜钟惠. 氧对IZO低压无结薄膜晶体管稳定性的影响. 物理学报, 2013, 62(13): 137201. doi: 10.7498/aps.62.137201
    [13] 李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华. 低温透明非晶IGZO薄膜晶体管的光照稳定性. 物理学报, 2013, 62(10): 108503. doi: 10.7498/aps.62.108503
    [14] 吴萍, 张杰, 李喜峰, 陈凌翔, 汪雷, 吕建国. 室温生长ZnO薄膜晶体管的紫外响应特性. 物理学报, 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [15] 李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林. 高迁移率非晶铟镓锌氧化物薄膜晶体管的制备与特性研究. 物理学报, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [16] 陈晓雪, 姚若河. 基于表面势的氢化非晶硅薄膜晶体管直流特性研究. 物理学报, 2012, 61(23): 237104. doi: 10.7498/aps.61.237104
    [17] 赵孔胜, 轩瑞杰, 韩笑, 张耕铭. 基于氧化铟锡的无结低电压薄膜晶体管. 物理学报, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [18] 强蕾, 姚若河. 非晶硅薄膜晶体管沟道中阈值电压及温度的分布. 物理学报, 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [19] 王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢. 氧化锌锡薄膜晶体管的研究. 物理学报, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [20] 徐天宁, 吴惠桢, 张莹莹, 王雄, 朱夏明, 原子健. In2O3 透明薄膜晶体管的制备及其电学性能的研究. 物理学报, 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
计量
  • 文章访问数:  3035
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-22
  • 修回日期:  2021-12-05
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-05

/

返回文章
返回