搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶胶凝胶法制备以HfO2为绝缘层和ZITO为有源层的高迁移率薄膜晶体管

朱乐永 高娅娜 张建华 李喜峰

引用本文:
Citation:

溶胶凝胶法制备以HfO2为绝缘层和ZITO为有源层的高迁移率薄膜晶体管

朱乐永, 高娅娜, 张建华, 李喜峰

High mobility thin-film transistor with solution-processed hafnium-oxide dielectric and zinc-indium-tin-oxide semiconductor

Zhu Le-Yong, Gao Ya-Na, Zhang Jian-Hua, Li Xi-Feng
PDF
导出引用
  • 采用溶胶凝胶法制备了h-k氧化铪HfO2薄膜, 经500℃退火后, 获得了高透过率、表面光滑、低漏电流和相对高介电常数的HfO2薄膜. 并采用氧化铪作为绝缘层和锌铟锡氧化物作为有源层成功地制备了底栅顶接触结构薄膜晶体管器件. 获得的薄膜晶体管器件的饱和迁移率大于100 cm2·V-1·s-1, 阈值电压为-0.5 V, 开关比为5×106, 亚阈值摆幅为105 mV/decade. 表明采用溶胶凝胶制备的薄膜晶体管具备高的迁移率, 其迁移率接近低温多晶硅薄膜晶体管的迁移率.
    In this paper, bottom-gate-top-contact structured thin-film transistors (TFTs) are fabricated by solution-processing of hafnium oxide (HfO2) dielectrics and zinc-indium-tin-oxide (ZITO) semiconductors. Solution-processed HfO2 films are annealed at different temperatures, and the 500℃ annealed HfO2 dielectrics can exhibit optimizing film properties such as smooth surfaces (the RMS value of HfO2 films is less than 1 nm), low leakage current density (1.25×10-7 A/cm2 at 1 MV/cm), high transmittance (above 80% at the wavelength ranging from 400 to 800 nm) and high relative dielectric constant (about 12). The smooth surface of HfO2 dielectrics is attributed to the decreased charge trapping states at the interface between the HfO2 dielectrics and ZITO semiconductors, and thus improves the device electrical performance and stability. Hence, TFT devices of HfO2 dielectrics annealed at 500℃ show a high saturated field effect mobility of more than 100 cm2·V-1·s-1 a low threshold voltage of -0.5 V, an on-to-off current ratio of 5×106 and a small subthreshold swing of 105 mV/dec. An almost negligible threshold voltage shift is observed under a positive bias stress for 1000 s, indicating the excellent stability of HfO2 TFT devices.
    • 基金项目: 上海科学技术委员会项目(批准号: 13520500200, 14XD1401800)和国家高技术研究发展计划(批准号: 2015AA033406)资助的课题.
    • Funds: Project supported by Shanghai Science and Technology Commission, China (Grant Nos. 13520500200, 14XD1401800) and the High Technology Researcd and Development Program of China (Grant No. 2015AA033406).
    [1]

    Tsay C Y, Cheng C H, Wang Y W 2012 Ceram. Int. 38 1677

    [2]

    Lin W K, Liu K C, Chang S T, Li C S 2012 Thin Solid Films 520 3079

    [3]

    Bobade S M, Shin J H, Cho Y J, You J S, Choi D K 2009 Appl. Surf. Sci. 255 7831

    [4]

    Panda D, Tseng T Y 2013 Thin Solid Films 531 1

    [5]

    Li X F, Xin E L, Zhang J H 2013 IEEE Trans. Electron Devices 60 3413

    [6]

    Wu C H, Chang K M, Huang S H, Deng I C, Wu C J, Chiang W H, Chang C C 2012 IEEE Electron Device Lett. 33 552

    [7]

    Gong Y P, Li A D, Qian X, Zhao C, Wu D 2009 J. Phys. D: Appl. Phys. 42 015405

    [8]

    Son H, Kim J, Yang J, Cho D, Yi M 2011 Curr. Appl. Phys. 11 S135

    [9]

    Khairnar A G, Mahajan A M 2013 Solid State Sci. 15 24

    [10]

    Son D H, Kim D H, Sung S J, Jung E A, Kang J K 2010 Curr. Appl. Phys. 10 e157

    [11]

    Kim M G, Kim H S, Ha Y G, He J, Kanatzidis M G, Facchetti A, Marks T J 2010 J. Am. Chem. Soc. 132 10352

    [12]

    Pu H, Li H, Yang Z, Zhou Q, Dong C, Zhang Q 2013 ECS Solid State Lett. 2 N35

    [13]

    Zhu L Y, Gao Y N, Li X F, Sun X W, Zhang J H 2014 J. Mater. Res. 29 1620

    [14]

    Ma C Y, Wang W J, Wang J, Miao C Y, Li S L, Zhang Q Y 2013 Thin Solid Films 545 279

    [15]

    Chen F H, Hung M N, YangJ F, Kuo S Y, Her J L, Matsuda Y H, Pan T M 2013 J. Phys. Chem. Sol. 74 570

    [16]

    Lee C G, Dodabalapur A 2012 J. Electron. Mater. 41 895

    [17]

    Gao Y N, Li X F, Zhang J H 2014 Acta Phys. Sin. 63 118502 (in Chinese) [高娅娜, 李喜峰, 张建华 2014 物理学报 63 118502]

    [18]

    Hsu C H, Yan S F 2011 J. Am. Ceram. Soc. 94 822

    [19]

    Zhao Y P, Wang G C, Lu T M, Palasantzas G, De Hosson J Th M 1999 Phys. Rev. B 60 9157

    [20]

    Son D H, Kim D H, Kim J H, Sung S J, Jung E A, Kang J K 2010 Electrochem. Solid-State Lett. 13 H274

    [21]

    Li F M, Bayer B C, Hofmann S, Speakman S P, Ducati C, Milne W I, Flewitt A J 2013 Phys. Status Solidi B 250 957

    [22]

    Park J H, Lee S J, Lee T I, Kim J H, Kim C H, Chae G S, Ham M H, Baik H K, Myoung J M 2013 J. Mater. Chem. C 1 1840

    [23]

    Kamiya T, Nomura K, Hosono H 2010 Adv. Mater. 11 044305

    [24]

    Xin E L, Li X F, Chen L L, Shi J F, Li C Y, Zhang J H 2012 Chin. J. Lumin. 33 1149 (in Chinese) [信恩龙, 李喜峰, 陈龙龙, 石继锋, 李春亚, 张建华 2012 发光学报 33 1149]

  • [1]

    Tsay C Y, Cheng C H, Wang Y W 2012 Ceram. Int. 38 1677

    [2]

    Lin W K, Liu K C, Chang S T, Li C S 2012 Thin Solid Films 520 3079

    [3]

    Bobade S M, Shin J H, Cho Y J, You J S, Choi D K 2009 Appl. Surf. Sci. 255 7831

    [4]

    Panda D, Tseng T Y 2013 Thin Solid Films 531 1

    [5]

    Li X F, Xin E L, Zhang J H 2013 IEEE Trans. Electron Devices 60 3413

    [6]

    Wu C H, Chang K M, Huang S H, Deng I C, Wu C J, Chiang W H, Chang C C 2012 IEEE Electron Device Lett. 33 552

    [7]

    Gong Y P, Li A D, Qian X, Zhao C, Wu D 2009 J. Phys. D: Appl. Phys. 42 015405

    [8]

    Son H, Kim J, Yang J, Cho D, Yi M 2011 Curr. Appl. Phys. 11 S135

    [9]

    Khairnar A G, Mahajan A M 2013 Solid State Sci. 15 24

    [10]

    Son D H, Kim D H, Sung S J, Jung E A, Kang J K 2010 Curr. Appl. Phys. 10 e157

    [11]

    Kim M G, Kim H S, Ha Y G, He J, Kanatzidis M G, Facchetti A, Marks T J 2010 J. Am. Chem. Soc. 132 10352

    [12]

    Pu H, Li H, Yang Z, Zhou Q, Dong C, Zhang Q 2013 ECS Solid State Lett. 2 N35

    [13]

    Zhu L Y, Gao Y N, Li X F, Sun X W, Zhang J H 2014 J. Mater. Res. 29 1620

    [14]

    Ma C Y, Wang W J, Wang J, Miao C Y, Li S L, Zhang Q Y 2013 Thin Solid Films 545 279

    [15]

    Chen F H, Hung M N, YangJ F, Kuo S Y, Her J L, Matsuda Y H, Pan T M 2013 J. Phys. Chem. Sol. 74 570

    [16]

    Lee C G, Dodabalapur A 2012 J. Electron. Mater. 41 895

    [17]

    Gao Y N, Li X F, Zhang J H 2014 Acta Phys. Sin. 63 118502 (in Chinese) [高娅娜, 李喜峰, 张建华 2014 物理学报 63 118502]

    [18]

    Hsu C H, Yan S F 2011 J. Am. Ceram. Soc. 94 822

    [19]

    Zhao Y P, Wang G C, Lu T M, Palasantzas G, De Hosson J Th M 1999 Phys. Rev. B 60 9157

    [20]

    Son D H, Kim D H, Kim J H, Sung S J, Jung E A, Kang J K 2010 Electrochem. Solid-State Lett. 13 H274

    [21]

    Li F M, Bayer B C, Hofmann S, Speakman S P, Ducati C, Milne W I, Flewitt A J 2013 Phys. Status Solidi B 250 957

    [22]

    Park J H, Lee S J, Lee T I, Kim J H, Kim C H, Chae G S, Ham M H, Baik H K, Myoung J M 2013 J. Mater. Chem. C 1 1840

    [23]

    Kamiya T, Nomura K, Hosono H 2010 Adv. Mater. 11 044305

    [24]

    Xin E L, Li X F, Chen L L, Shi J F, Li C Y, Zhang J H 2012 Chin. J. Lumin. 33 1149 (in Chinese) [信恩龙, 李喜峰, 陈龙龙, 石继锋, 李春亚, 张建华 2012 发光学报 33 1149]

  • [1] 徐华, 刘京栋, 蔡炜, 李民, 徐苗, 陶洪, 邹建华, 彭俊彪. N 2O处理对背沟刻蚀金属氧化物薄膜晶体管性能的影响. 物理学报, 2022, 71(5): 058503. doi: 10.7498/aps.71.20211350
    [2] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析. 物理学报, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [3] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展. 物理学报, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [4] 覃婷, 黄生祥, 廖聪维, 于天宝, 罗衡, 刘胜, 邓联文. 铟镓锌氧薄膜晶体管的悬浮栅效应研究. 物理学报, 2018, 67(4): 047302. doi: 10.7498/aps.67.20172325
    [5] 邵龑, 丁士进. 氢元素对铟镓锌氧化物薄膜晶体管性能的影响. 物理学报, 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [6] 兰林锋, 张鹏, 彭俊彪. 氧化物薄膜晶体管研究进展. 物理学报, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [7] 王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞. 铟锌氧化物薄膜晶体管局域态分布的提取方法. 物理学报, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [8] 宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊彪. 铜-钼源漏电极对非晶氧化铟镓锌薄膜晶体管性能的改善. 物理学报, 2015, 64(12): 126103. doi: 10.7498/aps.64.126103
    [9] 高娅娜, 李喜峰, 张建华. 溶胶凝胶法制备高性能锆铝氧化物作为绝缘层的薄膜晶体管. 物理学报, 2014, 63(11): 118502. doi: 10.7498/aps.63.118502
    [10] 刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣. 非晶铟锌氧化物薄膜晶体管的低频噪声特性与分析. 物理学报, 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [11] 徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪. 源漏电极的制备对氧化物薄膜晶体管性能的影响. 物理学报, 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [12] 李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林. 高迁移率非晶铟镓锌氧化物薄膜晶体管的制备与特性研究. 物理学报, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [13] 石巍巍, 李雯, 仪明东, 解令海, 韦玮, 黄维. 基于栅绝缘层表面修饰的有机场效应晶体管迁移率的研究进展 . 物理学报, 2012, 61(22): 228502. doi: 10.7498/aps.61.228502
    [14] 赵孔胜, 轩瑞杰, 韩笑, 张耕铭. 基于氧化铟锡的无结低电压薄膜晶体管 . 物理学报, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [15] 王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢. 氧化锌锡薄膜晶体管的研究. 物理学报, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [16] 孙钦军, 徐征, 赵谡玲, 张福俊, 高利岩, 田雪雁, 王永生. 有机薄膜晶体管中接触效应的研究. 物理学报, 2010, 59(11): 8125-8130. doi: 10.7498/aps.59.8125
    [17] 陈跃宁, 徐征, 赵谡玲, 孙钦军, 尹飞飞, 董宇航. 最小二乘拟合计算有机薄膜晶体管迁移率的研究. 物理学报, 2010, 59(11): 8113-8117. doi: 10.7498/aps.59.8113
    [18] 徐天宁, 吴惠桢, 张莹莹, 王雄, 朱夏明, 原子健. In2O3 透明薄膜晶体管的制备及其电学性能的研究. 物理学报, 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
    [19] 袁广才, 徐征, 赵谡玲, 张福俊, 许娜, 孙钦军, 徐叙瑢. 低栅极电压控制下带有phenyltrimethoxysilane单分子自组装层的有机薄膜晶体管场效应特性研究. 物理学报, 2009, 58(7): 4941-4947. doi: 10.7498/aps.58.4941
    [20] 刘玉荣, 王智欣, 虞佳乐, 徐海红. 高迁移率聚合物薄膜晶体管. 物理学报, 2009, 58(12): 8566-8570. doi: 10.7498/aps.58.8566
计量
  • 文章访问数:  4221
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-06
  • 修回日期:  2015-04-25
  • 刊出日期:  2015-08-05

溶胶凝胶法制备以HfO2为绝缘层和ZITO为有源层的高迁移率薄膜晶体管

  • 1. 上海大学材料科学与工程学院, 上海 200072;
  • 2. 上海大学, 新型显示技术及应用集成教育部重点实验室, 上海 200072
    基金项目: 上海科学技术委员会项目(批准号: 13520500200, 14XD1401800)和国家高技术研究发展计划(批准号: 2015AA033406)资助的课题.

摘要: 采用溶胶凝胶法制备了h-k氧化铪HfO2薄膜, 经500℃退火后, 获得了高透过率、表面光滑、低漏电流和相对高介电常数的HfO2薄膜. 并采用氧化铪作为绝缘层和锌铟锡氧化物作为有源层成功地制备了底栅顶接触结构薄膜晶体管器件. 获得的薄膜晶体管器件的饱和迁移率大于100 cm2·V-1·s-1, 阈值电压为-0.5 V, 开关比为5×106, 亚阈值摆幅为105 mV/decade. 表明采用溶胶凝胶制备的薄膜晶体管具备高的迁移率, 其迁移率接近低温多晶硅薄膜晶体管的迁移率.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回