搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷墨打印高迁移率铟锌锡氧化物薄膜晶体管

赵泽贤 徐萌 彭聪 张涵 陈龙龙 张建华 李喜峰

引用本文:
Citation:

喷墨打印高迁移率铟锌锡氧化物薄膜晶体管

赵泽贤, 徐萌, 彭聪, 张涵, 陈龙龙, 张建华, 李喜峰

Inkjet printing high mobility indium-zinc-tin oxide thin film transistor

Zexian Zhao, Meng Xu, Cong Peng, Han Zhang, Longlong Chen, Jianhua Zhang, Xifeng Li
PDF
导出引用
  • 采用喷墨打印工艺制备了铟锌锡氧化物(indium-zinc-tin-oxide, IZTO)半导体薄膜,并应用于底栅顶接触结构薄膜晶体管(thin-film transistor, TFT).研究了墨水的溶剂成分以及溶质浓度对打印薄膜图案轮廓的影响.结果表明二元溶剂IZTO墨水中乙二醇溶剂可有效平衡溶质向内的马朗戈尼回流与向外的毛细管流,避免了单一溶剂墨水下溶质流动不平衡造成IZTO薄膜的咖啡环状沉积轮廓图案,获得均匀平坦的薄膜图案轮廓和良好接触特性,接触电阻为820 Ω,优化后IZTO TFT器件的饱和迁移率达到16.6 cm2·V-1·s-1,阈值电压为0.84 V,开关比高达3.74×109,亚阈值摆幅为0.24 V·dec-1.通过打印薄膜凝胶化模型解释了IZTO墨水溶剂成分、溶质浓度与最终薄膜形貌的关系.
    Metal oxide thin film transistor has been widely used in flat panel display industry because of its low leakage current, high mobility and large area uniformity. Besides with the development of printed display technology, inkjet printing process can fabricate the customizable patterns on diverse substrates without the need for vacuum or lithography, can significantly reduce cost and has received more and more attention. In this paper, we fabricate a bottom gate bottom contact structure thin film transistor (TFT) with indium-zinc-tin-oxide (IZTO) semiconductor using inkjet printing process. The surface morphology of the printed IZTO film is modified by adjusting the solvent composition and solute concentration of the printing precursor ink. The experimental result show that the use of binary solvents can effectively overcome the coffee ring shape caused by the accumulation of solute edge during the volatilization process of a single solvent, and finally show a uniform and flat contour surface. Further increase in solute concentration is in favor of formation of convex surface topology. The reason for the formation of the flat surface of the oxide film is the balance between the inward Marangoni reflux of the solute and the outward capillary flow during volatilization. In addition, using binary solvents printed IZTO thin film transistor exhibit excellent electrical properties. The ratio of width/length=50/30 exhibit a high on-off ratio of 1.21×109,a high saturation field-effect mobility of 16.6 cm2·V-1·s-1,a low threshold voltage of 0.84 V and subthreshold swing of 0.24 V/dec. The uniform and flat active layer thin film pattern can form good contact with the source leakage electrode, and the contact resistance of TFT devices with different width-to-length ratios is less than 1000 Ω, which can achieve the basic conditions of high mobility thin film transistors prepared by inkjet printing. Therefore, using mixture solvents provides a universal and facile way to print oxide films with desired surface topology and provide a visible path for inkjet printing of high-mobility thin film transistors.
  • [1]

    Jing B, Xu M, Peng C, Chen L L, Zhang J H, Li X F 2022 Acta Phys. Sin. 71 138502 (in Chinese)[荆斌,徐萌,彭聪,陈龙龙,张建华,李喜峰 2022 物理学报 71 138502]

    [2]

    Chu S, Hollberg L, Bjorkholm J E, Bolot S, Fuchs P, Knobelspies S, Temel O, Sevilla G T, Gilshtein E, Andres C, Shorubalko I, Liu Y, Troester G, Tiwari A A N, Romanyuk Y E 2019 Adv. Electron. Mater.5 1800843

    [3]

    Song O, Rhee D, Kim J, Jeon Y, Mazánek V, Söll A, Kwon Y A, Cho J H, Kim Y H, Kang J, Sofer Z 2022 npj 2D Mater. Appl.6 64

    [4]

    Liang K, Li D W, Ren H H, Zhao M M, Wang H, Ding M F, Xu G W, Zhao X L, Long S B, Zhu S Y, Sheng P, Li W B, Lin X, Zhu B W 2021 Nano-Micro Lett.13 164

    [5]

    Kwon J, Baek S, Lee Y, Tokito S, Jung S 2021 Langmuir37 10692

    [6]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature389 827

    [7]

    Lan L, Chen B, Peng J, Cao Y 2021 Polymer Materials Science & Engineering 37 150 (in Chinese)[兰林峰, 陈宝中, 彭俊彪, 曹镛 2021 高分子材料科学与工程 37 150]

    [8]

    Li Y, Lan L, Gao P, He P, Dai X, Cao H, Liang L, Peng J 2019 IEEE Electron Device Lett. 40 228

    [9]

    Ryu S O, Ha C H, Jun H Y, Ryu S O 2020 Journal of Electronic Materials49 2003

    [10]

    Gillan L, Li S, Lahtinen J, Chang C H, Alastalo A, Leppäniemi J 2021 Adv. Mater. Interfaces 8 2100728

    [11]

    Matavz A, Ursic U, Mocivnik J, Richter D, Humar M, Copar S, Malic B, Bobnar V 2022 J. Colloid Interface Sci. 608 1718

    [12]

    Sun D W, Chen C H, Zhang J, Wu X M, Chen H P, Guo T L 2018 Appl. Phys. Lett.112 012102

    [13]

    Zhu Z N, Zhang J H, Zhou Z W, Ning H L, Cai W, Wei J L, Zhou S X, Yao R H, Lu X B, Peng J B A 2019 ACS Appl. Mater. Interfaces11 5193

    [14]

    Zhu Z N, Ning H L, Cai W, Wei J L, Zhou S X, Yao R H, Lu X B, Zhang J H, Zhou Z W, Peng J B A 2018 Langmuir34 6413

    [15]

    Still T, Yunker P J, Yodh A G 2012 Langmuir28 4984

    [16]

    Hu H, Zhu J, Chen M, Guo T, Li F 2018 Appl. Surf. Sci.441 295

    [17]

    Zhong X, Duan F 2016 Eur. Phys. J. B39 18

    [18]

    Oh G, Jeong W, Jung N, Kang S H, Weon B M 2022 Phys. Rev. Appl.17 024010

    [19]

    Kim D, Jeong S, Park B K, Moon J 2006 Appl. Phys. Lett.89 264101

    [20]

    Kim M G, Kim H S, Ha Y G, He J Q, Kanatzidis M G, Facchetti A, Marks T J 2010 J. Am. Chem. Soc. 132 10352

    [21]

    Zhu L Y, Gao Y N, Zhang J H, Li X F 2015 Acta Phys. Sin. 64 168501 (in Chinese)[朱乐永, 高娅娜, 李喜峰, 张建华 2014 物理学报 64 168501]

    [22]

    Choi S, Kim K T, Park S K, Kim Y H 2019 Materials 12 852

    [23]

    Friederich A, Binder J R, Bauer W 2013 J. Am. Ceram. Soc.96 2093

    [24]

    Ishizuka H, Fukai J 2018 Exp. Fluids 59 4

    [25]

    Li Y Z, He P H, Chen S T, Lan L F, Dai X Q, Peng J B 2019 ACS Appl. Mater. Interfaces11 28052

    [26]

    Park J, Moon J 2006 Langmuir22 3506

    [27]

    Huang H, Hu H L, Zhu J G, Guo T L 2017 J. Electron. Mater.46 4497

    [28]

    Sun D, Chen C, Zhang J, Wu X, Chen H, Guo T 2018 Appl. Phys. Lett. 112 1

    [29]

    Tao H, Luo H D, Ning H L, Yao R H, Cai W, Zheng X F, Wang Y, Wang B, Cao H, Peng, J B 2021 Chin. J. Liq. Cryst. Disp. 36 663 (in Chinese)[陶洪, 罗浩德, 宁洪龙, 姚日晖, 蔡炜, 郑喜凤, 汪洋, 王铂, 曹慧, 彭俊彪 2021 液晶与显示 36 663]

    [30]

    Chen S, Li Y, Lin Y, He P, Long T, Deng C, Chen Z, Chen G, Tao H, Lan L, Peng J 2020 Coatings 10 425

    [31]

    Fan C L, Hsin T C, Yu X W, Lin Z C 2024 Mater. Sci. Semicond. Process. 172 1396

    [32]

    Weber C, Oberberg M, Weber D, Bock C, Pham D V, Kunze U 2014 Adv. Mater. Interfaces 1 1400137

    [33]

    Lin Y L, Chen S T, Wu Y B, Lan L F, Peng J B A 2021 Chin. J. Liq. Cryst. Disp. 36 1239 (in Chinese)[林奕龙,陈思婷,吴永波,兰林锋,彭俊彪 2021 液晶与显示 36 9

  • [1] 张雪, KimBokyung, LeeHyeonju, ParkJaehoon. 低温快速制备基于溶液工艺的高性能氧化铟薄膜及晶体管. 物理学报, doi: 10.7498/aps.73.20240082
    [2] 宋家宁, 毛雨, 王俊杰, 李丹阳, 欧家琦, 彭俊彪. 适用于喷墨打印制备发光二极管的ZnO量子点配体研究. 物理学报, doi: 10.7498/aps.72.20230312
    [3] 徐华, 刘京栋, 蔡炜, 李民, 徐苗, 陶洪, 邹建华, 彭俊彪. N 2O处理对背沟刻蚀金属氧化物薄膜晶体管性能的影响. 物理学报, doi: 10.7498/aps.71.20211350
    [4] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析. 物理学报, doi: 10.7498/aps.70.20210368
    [5] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展. 物理学报, doi: 10.7498/aps.69.20200653
    [6] 覃婷, 黄生祥, 廖聪维, 于天宝, 罗衡, 刘胜, 邓联文. 铟镓锌氧薄膜晶体管的悬浮栅效应研究. 物理学报, doi: 10.7498/aps.67.20172325
    [7] 邵龑, 丁士进. 氢元素对铟镓锌氧化物薄膜晶体管性能的影响. 物理学报, doi: 10.7498/aps.67.20180074
    [8] 兰林锋, 张鹏, 彭俊彪. 氧化物薄膜晶体管研究进展. 物理学报, doi: 10.7498/aps.65.128504
    [9] 王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞. 铟锌氧化物薄膜晶体管局域态分布的提取方法. 物理学报, doi: 10.7498/aps.65.128501
    [10] 宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊彪. 铜-钼源漏电极对非晶氧化铟镓锌薄膜晶体管性能的改善. 物理学报, doi: 10.7498/aps.64.126103
    [11] 高娅娜, 李喜峰, 张建华. 溶胶凝胶法制备高性能锆铝氧化物作为绝缘层的薄膜晶体管. 物理学报, doi: 10.7498/aps.63.118502
    [12] 刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣. 非晶铟锌氧化物薄膜晶体管的低频噪声特性与分析. 物理学报, doi: 10.7498/aps.63.098503
    [13] 徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪. 源漏电极的制备对氧化物薄膜晶体管性能的影响. 物理学报, doi: 10.7498/aps.63.038501
    [14] 吴萍, 张杰, 李喜峰, 陈凌翔, 汪雷, 吕建国. 室温生长ZnO薄膜晶体管的紫外响应特性. 物理学报, doi: 10.7498/aps.62.018101
    [15] 李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林. 高迁移率非晶铟镓锌氧化物薄膜晶体管的制备与特性研究. 物理学报, doi: 10.7498/aps.62.077302
    [16] 陈晓雪, 姚若河. 基于表面势的氢化非晶硅薄膜晶体管直流特性研究. 物理学报, doi: 10.7498/aps.61.237104
    [17] 强蕾, 姚若河. 非晶硅薄膜晶体管沟道中阈值电压及温度的分布. 物理学报, doi: 10.7498/aps.61.087303
    [18] 赵孔胜, 轩瑞杰, 韩笑, 张耕铭. 基于氧化铟锡的无结低电压薄膜晶体管. 物理学报, doi: 10.7498/aps.61.197201
    [19] 王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢. 氧化锌锡薄膜晶体管的研究. 物理学报, doi: 10.7498/aps.60.037305
    [20] 徐天宁, 吴惠桢, 张莹莹, 王雄, 朱夏明, 原子健. In2O3 透明薄膜晶体管的制备及其电学性能的研究. 物理学报, doi: 10.7498/aps.59.5018
计量
  • 文章访问数:  152
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-08

/

返回文章
返回