搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

喷墨打印高迁移率铟锌锡氧化物薄膜晶体管

赵泽贤 徐萌 彭聪 张涵 陈龙龙 张建华 李喜峰

引用本文:
Citation:

喷墨打印高迁移率铟锌锡氧化物薄膜晶体管

赵泽贤, 徐萌, 彭聪, 张涵, 陈龙龙, 张建华, 李喜峰

Inkjet printing high mobility indium-zinc-tin oxide thin film transistor

Zhao Ze-Xian, Xu Meng, Peng Cong, Zhang Han, Chen Long-Long, Zhang Jian-Hua, Li Xi-Feng
PDF
HTML
导出引用
  • 采用喷墨打印工艺制备了铟锌锡氧化物(indium-zinc-tin-oxide, IZTO)半导体薄膜, 并应用于底栅顶接触结构薄膜晶体管(thin-film transistor, TFT). 研究了墨水的溶剂成分以及溶质浓度对打印薄膜图案轮廓的影响. 结果表明二元溶剂IZTO墨水中乙二醇溶剂可有效平衡溶质向内的马兰戈尼回流与向外的毛细管流, 避免了单一溶剂墨水下溶质流动不平衡造成IZTO薄膜的咖啡环状沉积轮廓图案, 获得均匀平坦的薄膜图案轮廓和良好接触特性, 接触电阻为820 Ω, 优化后IZTO TFT器件的饱和迁移率达到16.6 cm2/(V·s), 阈值电压为0.84 V, 开关比高达3.74×109, 亚阈值摆幅为0.24 V/dec. 通过打印薄膜凝胶化模型解释了IZTO墨水溶剂成分、溶质浓度与最终薄膜形貌的关系.
    Metal oxide thin film transistor has been widely used in flat panel display industry because of its low leakage current, high mobility and large area uniformity. Besides, with the development of printed display technology, inkjet printing process can fabricate the customizable patterns on diverse substrates with no need of vacuum or lithography to be used, thus significantly reducing cost and receiving more and more attention. In this paper, we use inkjet printing technology to prepare a bottom gate bottom contact thin film transistor (TFT) by using indium-zinc-tin-oxide (IZTO) semiconductor. The surface morphology of the printed IZTO film is modified by adjusting the solvent composition and solute concentration of the printing precursor ink. The experimental result show that the use of binary solvents can effectively overcome the coffee ring shape caused by the accumulation of solute edge in the volatilization process of a single solvent, ultimately presenting a uniform and flat contour surface. Further increase in solute concentration is in favor of formation of convex surface topology. The reason for the formation of the flat surface of the oxide film is the balance between the inward Marangoni reflux of the solute and the outward capillary flow during volatilization. In addition, IZTO thin film transistor printed with binary solvents exhibits excellent electrical properties. The ratio of width/length = 50/30 exhibits a high on-off ratio of 1.21×109, a high saturation field-effect mobility is 16.6 cm2/(V·s), a low threshold voltage is 0.84 V, and subthreshold swing is 0.24 V/dec. The uniform and flat active layer thin film pattern can form good contact with the source leakage electrode, and the contact resistances of TFT devices with different width-to-length ratios are less than 1000 Ω, which can reach the basic conditions of high mobility thin film transistors prepared by inkjet printing. Therefore, using solvent mixture provides a universal and simple way to print oxide films with required surface topology, and present a visible path for inkjet printing of high-mobility thin film transistors.
      通信作者: 李喜峰, lixifeng@shu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFB3603805)资助的课题.
      Corresponding author: Li Xi-Feng, lixifeng@shu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3603805).
    [1]

    荆斌, 徐萌, 彭聪, 陈龙龙, 张建华, 李喜峰 2022 物理学报 71 138502Google Scholar

    Jing B, Xu M, Peng C, Chen L L, Zhang J H, Li X F 2022 Acta Phys. Sin. 71 138502Google Scholar

    [2]

    Chu S, Hollberg L, Bjorkholm J E, Bolot S, Fuchs P, Knobelspies S, Temel O, Sevilla G T, Gilshtein E, Andres C, Shorubalko I, Liu Y, Troester G, Tiwari A A N, Romanyuk Y E 2019 Adv. Electron. Mater. 5 1800843Google Scholar

    [3]

    Song O, Rhee D, Kim J, Jeon Y, Mazánek V, Söll A, Kwon Y A, Cho J H, Kim Y H, Kang J, Sofer Z 2022 npj 2D Mater. Appl. 6 64Google Scholar

    [4]

    Liang K, Li D W, Ren H H, Zhao M M, Wang H, Ding M F, Xu G W, Zhao X L, Long S B, Zhu S Y, Sheng P, Li W B, Lin X, Zhu B W 2021 Nano-Micro Lett. 13 164Google Scholar

    [5]

    Kwon J, Baek S, Lee Y, Tokito S, Jung S 2021 Langmuir 37 10692Google Scholar

    [6]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827Google Scholar

    [7]

    兰林峰, 陈宝中, 彭俊彪, 曹镛 2021 高分子材料科学与工程 37 150Google Scholar

    Lan L F, Chen B Z, Peng J B, Cao Y 2021 Polym. Mater. Sci. Eng. 37 150Google Scholar

    [8]

    Li Y Z, Lan L F, Gao P, He P H, Dai X, Cao H, Liang L, Peng J B 2019 IEEE Electron Device Lett. 40 228Google Scholar

    [9]

    Ryu S O, Ha C H, Jun H Y, Ryu S O 2020 J. Electron. Mater. 49 2003Google Scholar

    [10]

    Gillan L, Li S, Lahtinen J, Chang C H, Alastalo A, Leppäniemi J 2021 Adv. Mater. Interfaces 8 2100728Google Scholar

    [11]

    Matavz A, Ursic U, Mocivnik J, Richter D, Humar M, Copar S, Malic B, Bobnar V 2022 J. Colloid Interface Sci. 608 1718Google Scholar

    [12]

    Sun D W, Chen C H, Zhang J, Wu X M, Chen H P, Guo T L 2018 Appl. Phys. Lett. 112 012102Google Scholar

    [13]

    Zhu Z N, Zhang J H, Zhou Z W, Ning H L, Cai W, Wei J L, Zhou S X, Yao R H, Lu X B, Peng J B A 2019 ACS Appl. Mater. Interfaces 11 5193Google Scholar

    [14]

    Zhu Z N, Ning H L, Cai W, Wei J L, Zhou S X, Yao R H, Lu X B, Zhang J H, Zhou Z W, Peng J B A 2018 Langmuir 34 6413Google Scholar

    [15]

    Still T, Yunker P J, Yodh A G 2012 Langmuir 28 4984Google Scholar

    [16]

    Hu H L, Zhu J G, Chen M S, Guo T L, Li F S 2018 Appl. Surf. Sci. 441 295Google Scholar

    [17]

    Zhong X, Duan F 2016 Eur. Phys. J. B 39 18Google Scholar

    [18]

    Oh G, Jeong W, Jung N, Kang S H, Weon B M 2022 Phys. Rev. Appl. 17 024010Google Scholar

    [19]

    Kim D, Jeong S, Park B K, Moon J 2006 Appl. Phys. Lett. 89 264101Google Scholar

    [20]

    Kim M G, Kim H S, Ha Y G, He J Q, Kanatzidis M G, Facchetti A, Marks T J 2010 J. Am. Chem. Soc. 132 10352Google Scholar

    [21]

    朱乐永, 高娅娜, 李喜峰, 张建华 2015 物理学报 64 168501Google Scholar

    Zhu L Y, Gao Y N, Zhang J H, Li X F 2015 Acta Phys. Sin. 64 168501Google Scholar

    [22]

    Choi S, Kim K T, Park S K, Kim Y H 2019 Materials 12 852Google Scholar

    [23]

    Friederich A, Binder J R, Bauer W 2013 J. Am. Ceram. Soc. 96 2093Google Scholar

    [24]

    Ishizuka H, Fukai J 2018 Exp. Fluids 59 4Google Scholar

    [25]

    Li Y Z, He P H, Chen S T, Lan L F, Dai X Q, Peng J B 2019 ACS Appl. Mater. Interfaces 11 28052Google Scholar

    [26]

    Park J, Moon J 2006 Langmuir 22 3506Google Scholar

    [27]

    Huang H, Hu H L, Zhu J G, Guo T L 2017 J. Electron. Mater. 46 4497Google Scholar

    [28]

    陶洪, 罗浩德, 宁洪龙, 姚日晖, 蔡炜, 郑喜凤, 汪洋, 王铂, 曹慧, 彭俊彪 2021 液晶与显示 36 663Google Scholar

    Tao H, Luo H D, Ning H L, Yao R H, Cai W, Zheng X F, Wang Y, Wang B, Cao H, Peng, J B 2021 Chin. J. Liq. Cryst. Disp. 36 663Google Scholar

    [29]

    Chen S T, Li Y Z, Lin Y L, He P H, Long T, Deng C H, Chen Z, Chen G S, Tao H, Lan L F, Peng J B 2020 Coatings 10 425Google Scholar

    [30]

    Fan C L, Hsin T C, Yu X W, Lin Z C 2024 Mater. Sci. Semicond. Process. 172 1396Google Scholar

    [31]

    Weber C, Oberberg M, Weber D, Bock C, Pham D V, Kunze U 2014 Adv. Mater. Interfaces 1 1400137Google Scholar

    [32]

    林奕龙, 陈思婷, 吴永波, 兰林锋, 彭俊彪 2021 液晶与显示 36 1239Google Scholar

    Lin Y L, Chen S T, Wu Y B, Lan L F, Peng J B A 2021 Chin. J. Liq. Cryst. Disp. 36 1239Google Scholar

  • 图 1  IZTO TFT器件的光学显微镜图像, 插图显示截面示意图

    Fig. 1.  Microscope images of the IZTO TFT device, where the inset shows the schematic cross section.

    图 2  IZTO前驱体墨水的热重曲线(实线)和热重微分曲线(虚线)

    Fig. 2.  The TGA curve (solid lines) and DTG curve (dotted lines) of IZTO precursor ink.

    图 3  不同溶剂、不同浓度下的IZTO薄膜的表面轮廓图

    Fig. 3.  Surface profiles of IZTO films with different solvents and concentrations.

    图 4  印刷薄膜的凝胶化过程机理

    Fig. 4.  Mechanism about gelation process of the printing film.

    图 5  (a) 单溶剂和(b)二元溶剂制备IZTO薄膜的O 1s峰的XPS光谱

    Fig. 5.  XPS spectra of O 1s peaks of IZTO films prepared with (a) single solvent and (b) binary solvents.

    图 6  IZTO TFT器件转移特性曲线

    Fig. 6.  Transfer characteristic curves of IZTO TFT devices.

    图 7  IZTO TFT器件的(a), (b)输出与(c), (d)转移曲线 (a), (c)凸状轮廓; (b), (d)平坦轮廓

    Fig. 7.  (a), (b) Output and (c), (d) transfer curves of IZTO TFT device: (a), (c) Convex profile and (b), (d) uniform flat profile.

    图 8  喷墨打印10个IZTO TFT器件的转移特性曲线汇总图

    Fig. 8.  Summary of transfer characteristic curves of 10 IZTO TFT devices fabricated by inkjet printing.

    图 9  不同沟道宽长比的IZTO TFT器件的转移特性曲线

    Fig. 9.  Transfer characteristic curves of IZTO TFT devices with different aspect ratios.

    图 10  沟道长度为10—30 μm时IZTO TFT 获得的总电阻与沟道长度(RT-L)图

    Fig. 10.  Total resistance vs. channel length (RT-L) plots obtained from IZTO TFTs with a channel length of 10–30 μm.

    表 1  不同浓度、溶剂下对应的IZTO墨水的物理参数

    Table 1.  Structural parameters of IZTO ink of different concentration and solvents.

    IZTO墨水样品 ρ/(g·cm–3) η/cP γ/(mN·m–1) Z
    c = 0.2 mol/L,
    2-MOE
    1.04 4.05 34.4 6.59
    c = 0.2 mol/L,
    2-MOE+EG
    1.07 6.90 38.1 4.14
    c = 0.4 mol/L,
    2-MOE+EG
    1.10 8.44 39.1 3.48
    下载: 导出CSV

    表 2  喷墨打印法制备TFT器件的性能对比

    Table 2.  Performance comparison of TFT devices prepared by inkjet printing method.

    成膜方式 μsat/(cm2·V–1·s–1) VTH/V S.S/(V·dec–1) Ion/Ioff 关态电流/A 文献
    喷墨打印 4.63 –1.44 0.18 >107 <10–12 [8]
    喷墨打印 1.3 0.14 0.44 2.3×104 <10–9 [10]
    喷墨打印 4.6 0.9 >105 1×10–10 [28]
    喷墨打印 3.0 –0.51 0.21 1.59×107 5×10–13 [29]
    磁控溅射 13.6 1.04 0.18 5.65×106 2×10–12 [30]
    喷墨打印 16.6 0.84 0.24 1.21×109 ≤10–13 本文
    下载: 导出CSV

    表 3  喷墨打印IZTO TFT的电性能参数平均值

    Table 3.  Average electrical performance parameters of inkjet printed IZTO TFT.

    μ/(cm2·V–1·s–1) VTH/V S.S/(mV·dec–1)
    Average value 11 ± 2 0.6 ± 0.15 90 ± 15
    下载: 导出CSV

    表 4  不同沟道宽长比的IZTO为有源层TFT器件性能对比

    Table 4.  Structural parameters of IZTO TFT devices with different aspect ratios.

    W/Lμsat/
    (cm2·V–1·s–1)
    VTH/
    V
    S.S/(V·dec–1)
    Ion/Ioff
    50/3016.60.840.241.21×109
    50/2014.90.730.152.79×109
    50/1011.50.570.103.74×109
    下载: 导出CSV
  • [1]

    荆斌, 徐萌, 彭聪, 陈龙龙, 张建华, 李喜峰 2022 物理学报 71 138502Google Scholar

    Jing B, Xu M, Peng C, Chen L L, Zhang J H, Li X F 2022 Acta Phys. Sin. 71 138502Google Scholar

    [2]

    Chu S, Hollberg L, Bjorkholm J E, Bolot S, Fuchs P, Knobelspies S, Temel O, Sevilla G T, Gilshtein E, Andres C, Shorubalko I, Liu Y, Troester G, Tiwari A A N, Romanyuk Y E 2019 Adv. Electron. Mater. 5 1800843Google Scholar

    [3]

    Song O, Rhee D, Kim J, Jeon Y, Mazánek V, Söll A, Kwon Y A, Cho J H, Kim Y H, Kang J, Sofer Z 2022 npj 2D Mater. Appl. 6 64Google Scholar

    [4]

    Liang K, Li D W, Ren H H, Zhao M M, Wang H, Ding M F, Xu G W, Zhao X L, Long S B, Zhu S Y, Sheng P, Li W B, Lin X, Zhu B W 2021 Nano-Micro Lett. 13 164Google Scholar

    [5]

    Kwon J, Baek S, Lee Y, Tokito S, Jung S 2021 Langmuir 37 10692Google Scholar

    [6]

    Deegan R D, Bakajin O, Dupont T F, Huber G, Nagel S R, Witten T A 1997 Nature 389 827Google Scholar

    [7]

    兰林峰, 陈宝中, 彭俊彪, 曹镛 2021 高分子材料科学与工程 37 150Google Scholar

    Lan L F, Chen B Z, Peng J B, Cao Y 2021 Polym. Mater. Sci. Eng. 37 150Google Scholar

    [8]

    Li Y Z, Lan L F, Gao P, He P H, Dai X, Cao H, Liang L, Peng J B 2019 IEEE Electron Device Lett. 40 228Google Scholar

    [9]

    Ryu S O, Ha C H, Jun H Y, Ryu S O 2020 J. Electron. Mater. 49 2003Google Scholar

    [10]

    Gillan L, Li S, Lahtinen J, Chang C H, Alastalo A, Leppäniemi J 2021 Adv. Mater. Interfaces 8 2100728Google Scholar

    [11]

    Matavz A, Ursic U, Mocivnik J, Richter D, Humar M, Copar S, Malic B, Bobnar V 2022 J. Colloid Interface Sci. 608 1718Google Scholar

    [12]

    Sun D W, Chen C H, Zhang J, Wu X M, Chen H P, Guo T L 2018 Appl. Phys. Lett. 112 012102Google Scholar

    [13]

    Zhu Z N, Zhang J H, Zhou Z W, Ning H L, Cai W, Wei J L, Zhou S X, Yao R H, Lu X B, Peng J B A 2019 ACS Appl. Mater. Interfaces 11 5193Google Scholar

    [14]

    Zhu Z N, Ning H L, Cai W, Wei J L, Zhou S X, Yao R H, Lu X B, Zhang J H, Zhou Z W, Peng J B A 2018 Langmuir 34 6413Google Scholar

    [15]

    Still T, Yunker P J, Yodh A G 2012 Langmuir 28 4984Google Scholar

    [16]

    Hu H L, Zhu J G, Chen M S, Guo T L, Li F S 2018 Appl. Surf. Sci. 441 295Google Scholar

    [17]

    Zhong X, Duan F 2016 Eur. Phys. J. B 39 18Google Scholar

    [18]

    Oh G, Jeong W, Jung N, Kang S H, Weon B M 2022 Phys. Rev. Appl. 17 024010Google Scholar

    [19]

    Kim D, Jeong S, Park B K, Moon J 2006 Appl. Phys. Lett. 89 264101Google Scholar

    [20]

    Kim M G, Kim H S, Ha Y G, He J Q, Kanatzidis M G, Facchetti A, Marks T J 2010 J. Am. Chem. Soc. 132 10352Google Scholar

    [21]

    朱乐永, 高娅娜, 李喜峰, 张建华 2015 物理学报 64 168501Google Scholar

    Zhu L Y, Gao Y N, Zhang J H, Li X F 2015 Acta Phys. Sin. 64 168501Google Scholar

    [22]

    Choi S, Kim K T, Park S K, Kim Y H 2019 Materials 12 852Google Scholar

    [23]

    Friederich A, Binder J R, Bauer W 2013 J. Am. Ceram. Soc. 96 2093Google Scholar

    [24]

    Ishizuka H, Fukai J 2018 Exp. Fluids 59 4Google Scholar

    [25]

    Li Y Z, He P H, Chen S T, Lan L F, Dai X Q, Peng J B 2019 ACS Appl. Mater. Interfaces 11 28052Google Scholar

    [26]

    Park J, Moon J 2006 Langmuir 22 3506Google Scholar

    [27]

    Huang H, Hu H L, Zhu J G, Guo T L 2017 J. Electron. Mater. 46 4497Google Scholar

    [28]

    陶洪, 罗浩德, 宁洪龙, 姚日晖, 蔡炜, 郑喜凤, 汪洋, 王铂, 曹慧, 彭俊彪 2021 液晶与显示 36 663Google Scholar

    Tao H, Luo H D, Ning H L, Yao R H, Cai W, Zheng X F, Wang Y, Wang B, Cao H, Peng, J B 2021 Chin. J. Liq. Cryst. Disp. 36 663Google Scholar

    [29]

    Chen S T, Li Y Z, Lin Y L, He P H, Long T, Deng C H, Chen Z, Chen G S, Tao H, Lan L F, Peng J B 2020 Coatings 10 425Google Scholar

    [30]

    Fan C L, Hsin T C, Yu X W, Lin Z C 2024 Mater. Sci. Semicond. Process. 172 1396Google Scholar

    [31]

    Weber C, Oberberg M, Weber D, Bock C, Pham D V, Kunze U 2014 Adv. Mater. Interfaces 1 1400137Google Scholar

    [32]

    林奕龙, 陈思婷, 吴永波, 兰林锋, 彭俊彪 2021 液晶与显示 36 1239Google Scholar

    Lin Y L, Chen S T, Wu Y B, Lan L F, Peng J B A 2021 Chin. J. Liq. Cryst. Disp. 36 1239Google Scholar

  • [1] 张雪, KimBokyung, LeeHyeonju, ParkJaehoon. 低温快速制备基于溶液工艺的高性能氧化铟薄膜及晶体管. 物理学报, 2024, 73(9): 096802. doi: 10.7498/aps.73.20240082
    [2] 宋家宁, 毛雨, 王俊杰, 李丹阳, 欧家琦, 彭俊彪. 适用于喷墨打印制备发光二极管的ZnO量子点配体研究. 物理学报, 2023, 72(13): 137301. doi: 10.7498/aps.72.20230312
    [3] 徐华, 刘京栋, 蔡炜, 李民, 徐苗, 陶洪, 邹建华, 彭俊彪. N 2O处理对背沟刻蚀金属氧化物薄膜晶体管性能的影响. 物理学报, 2022, 71(5): 058503. doi: 10.7498/aps.71.20211350
    [4] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析. 物理学报, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [5] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展. 物理学报, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [6] 覃婷, 黄生祥, 廖聪维, 于天宝, 罗衡, 刘胜, 邓联文. 铟镓锌氧薄膜晶体管的悬浮栅效应研究. 物理学报, 2018, 67(4): 047302. doi: 10.7498/aps.67.20172325
    [7] 邵龑, 丁士进. 氢元素对铟镓锌氧化物薄膜晶体管性能的影响. 物理学报, 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [8] 王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞. 铟锌氧化物薄膜晶体管局域态分布的提取方法. 物理学报, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [9] 兰林锋, 张鹏, 彭俊彪. 氧化物薄膜晶体管研究进展. 物理学报, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [10] 宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊彪. 铜-钼源漏电极对非晶氧化铟镓锌薄膜晶体管性能的改善. 物理学报, 2015, 64(12): 126103. doi: 10.7498/aps.64.126103
    [11] 高娅娜, 李喜峰, 张建华. 溶胶凝胶法制备高性能锆铝氧化物作为绝缘层的薄膜晶体管. 物理学报, 2014, 63(11): 118502. doi: 10.7498/aps.63.118502
    [12] 刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣. 非晶铟锌氧化物薄膜晶体管的低频噪声特性与分析. 物理学报, 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [13] 徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪. 源漏电极的制备对氧化物薄膜晶体管性能的影响. 物理学报, 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [14] 吴萍, 张杰, 李喜峰, 陈凌翔, 汪雷, 吕建国. 室温生长ZnO薄膜晶体管的紫外响应特性. 物理学报, 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [15] 李帅帅, 梁朝旭, 王雪霞, 李延辉, 宋淑梅, 辛艳青, 杨田林. 高迁移率非晶铟镓锌氧化物薄膜晶体管的制备与特性研究. 物理学报, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [16] 陈晓雪, 姚若河. 基于表面势的氢化非晶硅薄膜晶体管直流特性研究. 物理学报, 2012, 61(23): 237104. doi: 10.7498/aps.61.237104
    [17] 强蕾, 姚若河. 非晶硅薄膜晶体管沟道中阈值电压及温度的分布. 物理学报, 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [18] 赵孔胜, 轩瑞杰, 韩笑, 张耕铭. 基于氧化铟锡的无结低电压薄膜晶体管. 物理学报, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [19] 王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢. 氧化锌锡薄膜晶体管的研究. 物理学报, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [20] 徐天宁, 吴惠桢, 张莹莹, 王雄, 朱夏明, 原子健. In2O3 透明薄膜晶体管的制备及其电学性能的研究. 物理学报, 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
计量
  • 文章访问数:  2363
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-14
  • 修回日期:  2024-05-04
  • 上网日期:  2024-05-08
  • 刊出日期:  2024-06-20

/

返回文章
返回