搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D NAND闪存中TiN与氧化表面F吸附作用的第一性原理研究

方语萱 杨益 夏志良 霍宗亮

引用本文:
Citation:

3D NAND闪存中TiN与氧化表面F吸附作用的第一性原理研究

方语萱, 杨益, 夏志良, 霍宗亮

A first-principles study of F adsorption by TiN with its oxide surface in 3D NAND flash memory

FANG Yuxuan, YANG Yi, XIA Zhiliang, HUO Zongliang
PDF
导出引用
  • 随着3D NAND技术的发展,存储阵列工艺的堆叠层数越来越高,后栅工艺中金属钨(W)栅字线(WL)层填充的工艺也面临越来越严峻的挑战。钨栅沉积工艺中的主要挑战在于氟攻击问题,钨栅填充时产生的空洞导致了含氟(F)副产物的积聚,并在后续高温制程的激发下,扩散侵蚀其周边氧化物层,致使字线漏电,严重影响器件的良率及可靠性。为改善氟攻击问题,通常在钨栅沉积之前再沉积一层薄的氮化钛作为阻挡层。然而在对栅极叠层组分分析中发现,F元素聚集在TiN薄膜表面,并且难以通过退火排出。本文采用第一性原理计算,研究了TiN薄膜表面吸附含F物种的情况,提出TiN的表面氧化能加剧对含F物种的吸附作用,以仿真结果指导了栅极工艺过程的优化方向。基于第一性原理计算结果,提出氨气吹扫表面处理方法,有效改善了3D NAND中的氟攻击问题,将字线漏电率降低25 %,晶圆翘曲度降低43 %。
    3D NAND flash memory stands as a pivotal technology in the domain of mainstream memory solutions, primarily due to its exceptionally low bit cost. The architecture of 3D NAND, characterized by its vertically stacked design, substantially enhances the capacity of individual chips. This advancement aligns perfectly with the demands for high-capacity data storage in contemporary settings, securing its widespread adoption across diverse application scenarios. As storage densities increase, so does the complexity of process integration, introducing new challenges. The word lines in 3D NAND are typically filled using gate replacement techniques, with Atomic Layer Deposition (ALD) favored for its superior step-coverage, especially for depositing tungsten (W) at the gate, compared to Chemical Vapor Deposition (CVD). However, due to the complexity of the replacement gate deposition structure, fluorine (F) residues are found in the voids of the tungsten metal gate filling structure and diffuse into the surrounding structure under subsequent process conditions, corroding other films such as silicon oxide and degrading device performance and reliability. To ameliorate the fluorine attack problem, a thin layer of titanium nitride is usually deposited as a barrier layer before tungsten gate deposition, which blocks the fluorine in the tungsten gate and prevents it from diffusing into the oxide layer. Previously, there are studies to increase the ability to stop F diffusion by varying the thickness of the F blocking layer (TiN). However, increasing the thickness of TiN will further exacerbate the complexity of high aspect ratio etching in the 3D NAND process, thereby adversely affecting subsequent processes. To further minimize the effect of fluorine attack, residual fluorine elements can also be expelled by introducing annealing in the subsequent process stream. In the actual 3D NAND process, elemental fluorine (F) is adsorbed and accumulates on the TiN surface, and is further activated by subsequent high-temperature processes, leading to severe fluorine attack. The delay between TiN deposition and subsequent processing steps is hypothesized to facilitate fluorine adsorption due to the oxidation of TiN. This paper corroborates the hypothesis through first-principles calculations, demonstrating the role of TiN oxidation in fluorine adsorption. This paper evaluates the impact of this oxidation on the fluorine-blocking effectiveness of the TiN barrier layer. We simulate the adsorption of fluorine-containing by-products on TiN and its oxides, providing theoretical insights into mitigating fluorine attack. The higher degree of TiN oxidation is more likely to cause F adsorption, and Ti exposed surface TiN is more prone to oxidation, which is more likely to cause F adsorption in both unoxidized and oxidized conditions. Based on these insights, we implemented an ammonia purge treatment in 3D NAND manufacturing, which effectively minimized fluorine attack, reducing word line leakage probability by 25 % and wafer warpage by 43 %.
  • [1]

    Compagnoni C M, Goda A, Spinelli A S, Feeley P, Lacaita A L, Visconti A 2017 Proc. IEEE 105 1609

    [2]

    Vasilyev V, Chung S H, Song Y W 2007 Solid State Technol. 50 53

    [3]

    Mistry K, Allen C, Auth C, Beattie B, Bergstrom D, Bost M, Brazier M, Buehler M, Cappellani A, Chau R 2007 IEEE International Electron Devices Meeting Washington, DC, December 10-12, 2007 p247

    [4]

    Song Y J, Xia Z L, Hua W Y, Liu F, Huo Z L 2018 IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA) Beijing, China, November 21-23, 2018 p120

    [5]

    Schulze S, Wolansky D, Katzer J, Schubert M, Costina I, Mai A 2018 IEEE Trans. Semicond. Manuf. 31 528

    [6]

    Bakke J, Lei Y, Xu Y, Daito K, Fu X, Jian G, Wu K, Hung R, Jakkaraju R, Breil N 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC) San Jose, California, USA, May 23-26, 2016 p108

    [7]

    Lee J H, Hidayat R, Ramesh R, Roh H, Nandi D K, Lee W J, Kim S H 2022 Appl. Surf. Sci. 578 152062

    [8]

    Subramaniyan A, Luppi D F, Makela N, Bauer L, Madan A, Murphy R, Baumann F, Kohli K, Parks C 2016 27th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) Saratoga Springs, New York, USA, May 16-19, 2016 p313

    [9]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [10]

    Payne M C, Teter M P, Allan D C, Arias T, Joannopoulos a J 1992 Rev. Mod. Phys.64 1045

    [11]

    Blöchl P E, Kästner J, Först C J 2005 Handbook of Materials Modeling:Methods p93

    [12]

    Bonhomme C, Gervais C, Babonneau F, Coelho C, Pourpoint F, Azais T, Ashbrook S E, Griffin J M, Yates J R, Mauri F 2012 Chem. Rev. 112 5733

    [13]

    Zhang W, Cai J, Wang D, Wang Q, Wang S 2010 11th International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP) Xi'an, China, August 16-19, 2010p7-11

    [14]

    Abrahams S, Bernstein J 1971 J. Chem. Phys. 55 3206

    [15]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B Condens. 13 5188

    [16]

    Armstrong D, Perkins P 1969 Theor. Chim. Acta15 413

    [17]

    Carosati E, Sciabola S, Cruciani G 2004 J. Med. Chem.47 5114

    [18]

    Lennard-Jones J 1932 Trans. Faraday Soc.28 333

    [19]

    Perron H, Domain C, Roques J, Drot R, Simoni E, Catalette H 2007 Theor. Chem. Acc. 117 565

    [20]

    Nilsson K B 2005 Coordination chemistry in liquid ammonia and phosphorous donor solvents (Department of Chemistry, Swedish University of Agricultural Sciences) p7

    [21]

    Kuchitsu K, Konaka S 1966 J. Chem. Phys.45 4342

    [22]

    Jebasty R M, Vidya R 2019 ACS Biomaster Sci. Eng. 5 2001

    [23]

    Izadi S, Anandakrishnan R, Onufriev A V 2014 J. Phys. Chem. Lett. 5 3863

  • [1] 方语萱, 夏志良, 杨涛, 周文犀, 霍宗亮. 3D NAND闪存中氟攻击问题引起的字线漏电的改进. 物理学报, doi: 10.7498/aps.73.20231557
    [2] 秦京运, 舒群威, 袁艺, 仇伟, 肖立华, 彭平, 卢国松. Tl0.33WO3电子结构和太阳辐射屏蔽性能第一性原理研究. 物理学报, doi: 10.7498/aps.69.20191577
    [3] 付现凯, 陈万骐, 姜钟生, 杨波, 赵骧, 左良. Ti3O5弹性、电子和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190664
    [4] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.64.147102
    [5] 石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利. H掺杂α-Fe2O3的第一性原理研究. 物理学报, doi: 10.7498/aps.64.116301
    [6] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, doi: 10.7498/aps.63.163101
    [7] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.62.046201
    [8] 周鹏力, 史茹倩, 何静芳, 郑树凯. B-Al共掺杂3C-SiC的第一性原理研究. 物理学报, doi: 10.7498/aps.62.233101
    [9] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.61.077702
    [10] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.61.107102
    [11] 汝强, 李燕玲, 胡社军, 彭薇, 张志文. Sn3InSb4合金嵌Li性能的第一性原理研究. 物理学报, doi: 10.7498/aps.61.038210
    [12] 邓杨, 王如志, 徐利春, 房慧, 严辉. 立方(Ba0.5Sr0.5)TiO3高压诱导带隙变化的第一性原理研究. 物理学报, doi: 10.7498/aps.60.117309
    [13] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, doi: 10.7498/aps.60.037103
    [14] 范开敏, 杨莉, 彭述明, 龙兴贵, 吴仲成, 祖小涛. 第一性原理计算α-ScDx(D=H,He)的弹性常数. 物理学报, doi: 10.7498/aps.60.076201
    [15] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.6882
    [16] 孙源, 黄祖飞, 范厚刚, 明星, 王春忠, 陈岗. BiFeO3中各离子在铁电相变中作用本质的第一性原理研究. 物理学报, doi: 10.7498/aps.58.193.1
    [17] 祝国梁, 疏达, 戴永兵, 王俊, 孙宝德. Si在TiAl3中取代行为的第一性原理研究. 物理学报, doi: 10.7498/aps.58.210
    [18] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, doi: 10.7498/aps.57.4434
    [19] 宇 霄, 罗晓光, 陈贵锋, 沈 俊, 李养贤. 第一性原理计算XHfO3(X=Ba, Sr)的结构、弹性和电子特性. 物理学报, doi: 10.7498/aps.56.5366
    [20] 赵宗彦, 柳清菊, 张 瑾, 朱忠其. 3d过渡金属掺杂锐钛矿相TiO2的第一性原理研究. 物理学报, doi: 10.7498/aps.56.6592
计量
  • 文章访问数:  116
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2024-05-08

/

返回文章
返回