搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H掺杂α-Fe2O3的第一性原理研究

石瑜 白洋 莫丽玢 向青云 黄亚丽 曹江利

引用本文:
Citation:

H掺杂α-Fe2O3的第一性原理研究

石瑜, 白洋, 莫丽玢, 向青云, 黄亚丽, 曹江利

First-principles calculation for hydrogen-doped hematite

Shi Yu, Bai Yang, Mo Li-Bin, Xiang Qing-Yun, Huang Ya-Li, Cao Jiang-Li
PDF
导出引用
  • α-Fe2O3是一种重要的磁性半导体材料, 在电子器件中应用广泛, 具有重要的研究意义. 本文基于密度泛函理论, 采用GGA+U方法, 应用第一性原理对间隙H掺杂前后的六方相α-Fe2O3的晶格常数、态密度、Bader 电荷分布进行了计算分析. 研究了U值对结果的影响, 发现U=6 eV时, 体相α-Fe2O3的晶胞平衡体积、Fe原子磁矩、带隙值与实验值最符合. 在选取合适U值后, 第一性原理计算结果表明, H掺杂后, 间隙H部分被氧化, 其最近邻的Fe 和O部分被还原, H和O有一定程度的成键. 在费米面附近, 出现了新的杂化能级, 杂化能级扩展了价带顶的宽度, 同时导带底下移, 引起带隙减小, 表明H掺杂是一种有效的能带结构调控方法.
    Hexagonal α-Fe2O3 is one of the most common functional material used as magnetic semiconductor, and plays an important part in various applications, such as electronic devices etc. Based on the density functional theory, the lattice parameters, density of states and Bader charge analysis of α-Fe2O3 have been calculated using the first-principles calculation with GGA+U method. As Fe is a transition metal element, the value of U can be more accurate by considering the influence of the strong on-site Coulomb interaction between 3d electrons. First, the crystal equilibrium volume, the magnetic moment of Fe atom, and the band gap value of α-Fe2O3 are synthetically researched and compared with those with different U. Results indicate that the calculation model of α-Fe2O3 are in good agreement with the experimental model when the value of U is 6 eV. These parameters can also be adapted to the following doping calculaton. The α-Fe2O3 unit cell has both tetrahedral and octahedral interstitial sites. The calculation of doping formation energy shows that the α-Fe2O3 system is most stable when the doped hydrogen atom is in the tetrahedral interstitial site. The density of states show that the valence band and conduction band compositions are similar for the bulk and hydrogen-doped α-Fe2O3. That is, the valence bands are dominated mainly by both O 2p and Fe 3d orbitals with the O 2p orbitals playing a leading role, while the conduction band is dominated by Fe 3d orbitals. The band gap of α-Fe2O3 decreases from 2.2 to 1.63 eV after hydrogen doping. Also, a strong hybrid peak occurs near the Fermi level after hydrogen doping, which is chiefly composed of Fe 3d orbital, and the O 2p orbital also has a small contribution. The H 1s orbital is mainly in the lower level below the top valence band. Results of the Bader charge analysis and the density of states calculation for partial correlated atoms suggest that the new hybrid peak is chiefly caused by Fe atom which is closest to the hydrogen atom in the crystal cell. In this process, H atom loses electrons, and the nearest neighbors of H atom, i.e. O and Fe atoms, almost obtain all the electrons H atom loses, so H and O atoms are bonded together strongly, causing the hybrid peak, to expand the width of the top valence band and shift down the bottom of the conduction band, so that the band gap decreases and the electrical conductivity increases. Hydrogen doping is suggested to be an effective method to modify the band.
    • 基金项目: 中央高校基本科研经费专项资金(批准号:FRF-SD-12-027A,FRF-TP-13-047)、新世纪优秀人才支持计划(批准号:NCET-12-0778)和科技部创新方法工作专项项目(批准号:2012IM030500)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. FRF-SD-12-027A, FRF-TP-13-047), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-0778), and the Special Innovation Methods of the Ministry of Science and Technology of China (Grant No. 2012IM030500).
    [1]

    Droubay T, Rosso K M, Heald S M, McCready D E, Wang C M, Chambers S A 2007 Phys. Rev. B 75 104412

    [2]

    Amrit B, Velev J, Butler W H, Sarker S K, Bengone O 2004 Phys. Rev. B 69 174429

    [3]

    Pozun Z D, Henkelman G 2011 J. Chem. Phys. 134 224706

    [4]

    Shinde S S, Bhosale C H, Rajpure K Y 2011 J. Alloys Compd. 509 3943

    [5]

    Meng X Y, Qin G W, Li S, Wen X H, Ren Y P, Pei W L, Zuo L 2011 Appl. Phys. Lett. 98 112104

    [6]

    Zhang L, Xu M, Yu F, Yuan H, Ma T 2013 Acta Phys. Sin. 62 027501 (in Chinese) [张丽, 徐明, 余飞, 袁欢, 马涛 2013 物理学报 62 027501]

    [7]

    Zhang H, Liu Y J, Pan L H, Zhang Y 2009 Acta Phys. Sin. 58 7141 (in Chinese) [张晖, 刘拥军, 潘丽华, 张瑜 2009 物理学报 58 7141]

    [8]

    Pan F, Ding B F, Fa T, Cheng F F, Zhou S Q, Yao S D 2011 Acta Phys. Sin. 60 108501 (in Chinese) [潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 物理学报 60 108501]

    [9]

    Wang B B, Zhou J, Zhang H P, Chen J P 2014 Chin. Phys. B 23 087303

    [10]

    Xu Y, Jin Z M, Zhang Z B, Zhang Z Y, Lin X, Ma G H, Cheng Z X 2014 Chin. Phys. B 23 044206

    [11]

    Wang C, Wang F F, Fu X Q, Zhang E D, Xu Z 2011 Chin. Phys. B 20 050701

    [12]

    Praveen C S, Timon V, Valant M 2012 Comput. Mater. Sci. 55 192

    [13]

    Zielinski J, Zglinicka I, Znak L, Kaszkur Z 2010 Appl. Catal. A:Gen 381 191

    [14]

    Gaudon M, Pailhe N, Majimel J, Wattiaux A, Abel J, Demourgues A 2010 J. Solid States Chem. 183 2101

    [15]

    Hahn N T, Buddie Mullins C 2010 Chem. Mater. 22 6474

    [16]

    Lukowski M A, Song J 2011 J. Phys. Chem. C 115 12388

    [17]

    Liu J, Liang C H, Zhang H M, Tian Z F, Zhang S Y 2012 J. Phys. Chem. C 116 4896

    [18]

    Shwarsctein A K, Hu Y S, Forman A J, Stucky G D, McFarland E W 2008 J. Phys. Chem. C 112 15900

    [19]

    Shwarsctein A K, Huda M N, Walsh A, Yan Y F, Stucky G D, Hu Y S, Al-Jassim M M, McFarland E W 2010 Chem. Mater. 22 510

    [20]

    Zhang M L, Luo W J, Li Z S, Yu T, Zou Z G 2010 Appl. Phys. Lett. 97 042105

    [21]

    Tang H W, Yin W J, Matin M A, Wang H L, Deutsch T, Al-Jassim M M, Turner J A, Yan Y F 2012 J. Appl. Phys. 111 073502

    [22]

    Van de Walle C G, Neugebauer J 2003 Nature 423 626

    [23]

    Van de Walle C G 2000 Phys. Rev. Lett. 85 1012

    [24]

    Wardle M G, Goss J P, Briddon P R 2006 Phys. Rev. Lett. 96 1

    [25]

    Cox S F J 2003 J. Phys. Con. Matt. 15 1727

    [26]

    Peacock P W, Robertson J 2003 Appl. Phys. Lett. 83 2025

    [27]

    Kilic C, Zunger A. 2002 Appl. Phys. Lett. 81 73

    [28]

    Chang H, Wu J, Gu B L, Liu F, Duan W 2005 Phys. Rev. Lett. 95 196803

    [29]

    Chen W P, Shen Z J, Yuan G L 2007 Mater. Lett. 61 4354

    [30]

    Chen W P, Wang Y, Chan H L W 2008 Appl. Phys. Lett. 92 112907

    [31]

    Rollmann G, Rohrbach A, Entel P, Hafner J 2004 Phys. Rev. B 69 165107

    [32]

    Finger L W, Hazen R M 1980 J. Appl. Phys. 51 5362

    [33]

    Mochizuki S 1977 Phys Status Solidi A 41 591

    [34]

    Todorova M, Reuter K, Scheffler M 2004 J. Phys. Chem. B 108 14477

    [35]

    Chen W P, Wang J, Wang D Y, Wang Y, Qi J Q, Chan H L W 2004 Physica B 353 41

    [36]

    Cao J L, Wang X H, Zhang L, Liu M, Li L T 2003 Ceram. Int. 29 327

    [37]

    Cao J L, Wang X H, Zhang L, Li L T 2002 Mater. Lett. 57 386

    [38]

    Wang P, Liu Z R, Lin F, Zhou G, Wu J, Duan W H, Gu B L, Zhang S B 2010 Phys. Rev. B 82 193103

  • [1]

    Droubay T, Rosso K M, Heald S M, McCready D E, Wang C M, Chambers S A 2007 Phys. Rev. B 75 104412

    [2]

    Amrit B, Velev J, Butler W H, Sarker S K, Bengone O 2004 Phys. Rev. B 69 174429

    [3]

    Pozun Z D, Henkelman G 2011 J. Chem. Phys. 134 224706

    [4]

    Shinde S S, Bhosale C H, Rajpure K Y 2011 J. Alloys Compd. 509 3943

    [5]

    Meng X Y, Qin G W, Li S, Wen X H, Ren Y P, Pei W L, Zuo L 2011 Appl. Phys. Lett. 98 112104

    [6]

    Zhang L, Xu M, Yu F, Yuan H, Ma T 2013 Acta Phys. Sin. 62 027501 (in Chinese) [张丽, 徐明, 余飞, 袁欢, 马涛 2013 物理学报 62 027501]

    [7]

    Zhang H, Liu Y J, Pan L H, Zhang Y 2009 Acta Phys. Sin. 58 7141 (in Chinese) [张晖, 刘拥军, 潘丽华, 张瑜 2009 物理学报 58 7141]

    [8]

    Pan F, Ding B F, Fa T, Cheng F F, Zhou S Q, Yao S D 2011 Acta Phys. Sin. 60 108501 (in Chinese) [潘峰, 丁斌峰, 法涛, 成枫锋, 周生强, 姚淑德 2011 物理学报 60 108501]

    [9]

    Wang B B, Zhou J, Zhang H P, Chen J P 2014 Chin. Phys. B 23 087303

    [10]

    Xu Y, Jin Z M, Zhang Z B, Zhang Z Y, Lin X, Ma G H, Cheng Z X 2014 Chin. Phys. B 23 044206

    [11]

    Wang C, Wang F F, Fu X Q, Zhang E D, Xu Z 2011 Chin. Phys. B 20 050701

    [12]

    Praveen C S, Timon V, Valant M 2012 Comput. Mater. Sci. 55 192

    [13]

    Zielinski J, Zglinicka I, Znak L, Kaszkur Z 2010 Appl. Catal. A:Gen 381 191

    [14]

    Gaudon M, Pailhe N, Majimel J, Wattiaux A, Abel J, Demourgues A 2010 J. Solid States Chem. 183 2101

    [15]

    Hahn N T, Buddie Mullins C 2010 Chem. Mater. 22 6474

    [16]

    Lukowski M A, Song J 2011 J. Phys. Chem. C 115 12388

    [17]

    Liu J, Liang C H, Zhang H M, Tian Z F, Zhang S Y 2012 J. Phys. Chem. C 116 4896

    [18]

    Shwarsctein A K, Hu Y S, Forman A J, Stucky G D, McFarland E W 2008 J. Phys. Chem. C 112 15900

    [19]

    Shwarsctein A K, Huda M N, Walsh A, Yan Y F, Stucky G D, Hu Y S, Al-Jassim M M, McFarland E W 2010 Chem. Mater. 22 510

    [20]

    Zhang M L, Luo W J, Li Z S, Yu T, Zou Z G 2010 Appl. Phys. Lett. 97 042105

    [21]

    Tang H W, Yin W J, Matin M A, Wang H L, Deutsch T, Al-Jassim M M, Turner J A, Yan Y F 2012 J. Appl. Phys. 111 073502

    [22]

    Van de Walle C G, Neugebauer J 2003 Nature 423 626

    [23]

    Van de Walle C G 2000 Phys. Rev. Lett. 85 1012

    [24]

    Wardle M G, Goss J P, Briddon P R 2006 Phys. Rev. Lett. 96 1

    [25]

    Cox S F J 2003 J. Phys. Con. Matt. 15 1727

    [26]

    Peacock P W, Robertson J 2003 Appl. Phys. Lett. 83 2025

    [27]

    Kilic C, Zunger A. 2002 Appl. Phys. Lett. 81 73

    [28]

    Chang H, Wu J, Gu B L, Liu F, Duan W 2005 Phys. Rev. Lett. 95 196803

    [29]

    Chen W P, Shen Z J, Yuan G L 2007 Mater. Lett. 61 4354

    [30]

    Chen W P, Wang Y, Chan H L W 2008 Appl. Phys. Lett. 92 112907

    [31]

    Rollmann G, Rohrbach A, Entel P, Hafner J 2004 Phys. Rev. B 69 165107

    [32]

    Finger L W, Hazen R M 1980 J. Appl. Phys. 51 5362

    [33]

    Mochizuki S 1977 Phys Status Solidi A 41 591

    [34]

    Todorova M, Reuter K, Scheffler M 2004 J. Phys. Chem. B 108 14477

    [35]

    Chen W P, Wang J, Wang D Y, Wang Y, Qi J Q, Chan H L W 2004 Physica B 353 41

    [36]

    Cao J L, Wang X H, Zhang L, Liu M, Li L T 2003 Ceram. Int. 29 327

    [37]

    Cao J L, Wang X H, Zhang L, Li L T 2002 Mater. Lett. 57 386

    [38]

    Wang P, Liu Z R, Lin F, Zhou G, Wu J, Duan W H, Gu B L, Zhang S B 2010 Phys. Rev. B 82 193103

  • [1] 王秀宇, 王涛, 崔雨昂, 吴溪广润, 王洋. 基于第一性原理研究杂质补偿对硅光电性能的影响. 物理学报, 2024, 73(11): 116301. doi: 10.7498/aps.73.20231814
    [2] 付正鸿, 李婷, 单美乐, 郭糠, 苟国庆. H对Mg2Si力学性能影响的第一性原理研究. 物理学报, 2019, 68(17): 177102. doi: 10.7498/aps.68.20190368
    [3] 王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波. H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算. 物理学报, 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [4] 林俏露, 李公平, 许楠楠, 刘欢, 王苍龙. 金红石TiO2本征缺陷磁性的第一性原理计算. 物理学报, 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [5] 陈立晶, 李维学, 戴剑锋, 王青. Mn-N共掺p型ZnO的第一性原理计算. 物理学报, 2014, 63(19): 196101. doi: 10.7498/aps.63.196101
    [6] 邓胜华, 姜志林. F, Na共掺杂p型ZnO的第一性原理研究. 物理学报, 2014, 63(7): 077101. doi: 10.7498/aps.63.077101
    [7] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究. 物理学报, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [8] 段永华, 孙勇. (α, β , γ)-Nb5Si3电子结构和光学性质研究. 物理学报, 2012, 61(21): 217101. doi: 10.7498/aps.61.217101
    [9] 逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲. Fe, S共掺杂SnO2材料第一性原理分析. 物理学报, 2012, 61(2): 023101. doi: 10.7498/aps.61.023101
    [10] 赵荣达, 朱景川, 刘勇, 来忠红. FeAl(B2) 合金La, Ac, Sc 和 Y 元素微合金化的第一性原理研究. 物理学报, 2012, 61(13): 137102. doi: 10.7498/aps.61.137102
    [11] 蒋雷, 王培吉, 张昌文, 冯现徉, 逯瑶, 张国莲. 超晶格SnO2掺Cr的电子结构和光学性质的研究. 物理学报, 2011, 60(9): 093101. doi: 10.7498/aps.60.093101
    [12] 张易军, 闫金良, 赵刚, 谢万峰. Si掺杂β-Ga2O3的第一性原理计算与实验研究. 物理学报, 2011, 60(3): 037103. doi: 10.7498/aps.60.037103
    [13] 逯瑶, 王培吉, 张昌文, 蒋雷, 张国莲, 宋朋. 第一性原理研究In,N共掺杂SnO2材料的光电性质. 物理学报, 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [14] 逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲. 第一性原理研究Fe掺杂SnO2材料的光电性质. 物理学报, 2011, 60(11): 113101. doi: 10.7498/aps.60.113101
    [15] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质. 物理学报, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [16] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [17] 舒瑜, 张建民, 王国红, 徐可为. Cu台阶面多层弛豫的第一性原理研究. 物理学报, 2010, 59(7): 4911-4918. doi: 10.7498/aps.59.4911
    [18] 于峰, 王培吉, 张昌文. N掺杂SnO2材料光电性质的第一性原理研究. 物理学报, 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
    [19] 海阔, 唐东升, 袁华军, 彭跃华, 罗志华, 刘红霞, 陈亚琦, 余芳, 羊亿. 大面积α-Fe2O3纳米线及纳米带阵列的制备研究. 物理学报, 2009, 58(2): 1120-1125. doi: 10.7498/aps.58.1120
    [20] 张金奎, 邓胜华, 金 慧, 刘悦林. ZnO电子结构和p型传导特性的第一性原理研究. 物理学报, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
计量
  • 文章访问数:  8217
  • PDF下载量:  8479
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-31
  • 修回日期:  2015-01-07
  • 刊出日期:  2015-06-05

/

返回文章
返回