搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超晶格电子阻挡层周期数对AlGaN基深紫外发光二极管性能的影响

刘举 曹一伟 吕全江 杨天鹏 米亭亭 王小文 刘军林

引用本文:
Citation:

超晶格电子阻挡层周期数对AlGaN基深紫外发光二极管性能的影响

刘举, 曹一伟, 吕全江, 杨天鹏, 米亭亭, 王小文, 刘军林

Influence of period number of superlattice electron barrier layer on the performance of AlGaN-based deep ultraviolet LED

Liu Ju, Cao Yi-Wei, Lv Quan-Jiang, Yang Tian-Peng, Mi Ting-Ting, Wang Xiao-Wen, Liu Jun-Lin
PDF
HTML
导出引用
  • 在AlGaN基深紫外发光二极管(DUV-LEDs)中设计了具有不同周期数的超晶格电子阻挡层(SL-EBL)结构, 研究了SL-EBL周期数对DUV-LEDs发光效率、I-V特性、可靠性及有源区载流子复合机制的影响. 研究结果表明, 随着SL-EBL的周期数增加, DUV-LEDs的光输出功率(LOP)、外量子效率(EQE)和电光转换效率 (WPE)均呈先上升后下降的趋势, 同时泄漏电流减小, 可靠性提升. 当周期数为7时(厚度为28 nm), DUV-LEDs裸芯的EQE和WPE均达到最大值, 在7.5 mA注入电流下分别为3.5%和3.2%. 能带模拟结果证明了增加SL-EBL周期数可以有效提升电子势垒高度, 而几乎不改变空穴势垒高度. 然而, 当SL-EBL超过一定厚度时, 抑制了空穴向有源区的注入, 导致EQE和WPE随SL-EBL周期数变化出现拐点. 研究了SL-EBL周期数对DUV-LEDs载流子复合机制的影响, 发现增加SL-EBL周期数可以有效地降低有源区内载流子非辐射复合.
    The development of AlGaN-based deep ultraviolet light emitting diodes (DUV-LEDs) is currently limited by poor external quantum efficiency (EQE) and wall-plug efficiency (WPE). Internal quantum efficiency (IQE), as an important component of EQE, plays a crucial role in improving the performance of DUV-LEDs. The IQE is related to the carrier injection efficiency and the radiation recombination rate in the active region. In order to improve the IQE of AlGaN-based DUV-LEDs, this work proposes a scheme to optimize the period number of superlattice electron barrier layer (SL-EBL) to achieve better carrier injection efficiency and confinement capability. The effect of the period number of SL-EBL on the luminous efficiency, reliability and carrier recombination mechanism of AlGaN-based DUV-LEDs with an emission wavelength of 273 nm are investigated. The experimental results show that the light output power (LOP), external quantum efficiency (EQE) and wall-plug efficiency (WPE) of the DUV-LEDs tend to first increase and then decrease with the period number of SL-EBL increasing, while the leakage current decreases and the reliability is enhanced. The maximum EQE and WPE of the DUV-LED are 3.5% and 3.2%, respectively, at an injection current of 7.5 mA when the period number of SL-EBL is fixed at 7 (the thickness is 28 nm). Meanwhile, the numerical simulation results show that the electron potential barrier height is enhanced with the period number of SL-EBL increasing, and the variation of the hole potential barrier height is negligible. Therefore, increasing the period number of SL-EBL is beneficial to shielding the dislocations and suppressing the leakage of electrons into the p-type layer, which improves the luminous efficiency and reliability of DUV-LEDs. However, when the period number of SL-EBL exceeds 7, the excessively thick hole potential barrier prevents the holes from entering into the activation region and reduces the radiative recombination efficiency. Therefore, EQE and WPE will show an inflection point with the variation of the period number of SL-EBL. In addition, to investigate the carrier recombination mechanism of the active region, the experimental EQE curves are fitted by the ABC model as well as the different slopes in logarithmic light output power-current (L-I ) curves are calculated after aging. It can be found that increasing the period number of SL-EBL can effectively suppress the non-radiative combination of carriers in the active region. This investigation can provide an alternative way to enhance the photoelectric performance of DUV-LEDs.
      通信作者: 吕全江, lvquanjiang@ujs.edu.cn ; 刘军林, liujunlin@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62374076, 62104085)和江苏省双创团队项目(批准号: JSSCTD202146)资助的课题.
      Corresponding author: Lv Quan-Jiang, lvquanjiang@ujs.edu.cn ; Liu Jun-Lin, liujunlin@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62374076, 62104085) and the Innovation/Entrepreneurship Program of Jiangsu Province, China (Grant No. JSSCTD202146).
    [1]

    冯丽雅, 路慧敏, 朱一帆, 陈毅勇, 于彤军, 王建萍 2023 物理学报 72 048502Google Scholar

    Feng L Y, Lu H M, Zhu Y F, Chen Y Y, Yu T J, Wang J P 2023 Acta Phys. Sin. 72 048502Google Scholar

    [2]

    Kneissl M, Seong T Y, Han J, Amano H 2019 Nat. Photonics 13 233Google Scholar

    [3]

    Du P, Shi L, Liu S, Zhou S J 2022 Micro Nanostruct. 163 107150Google Scholar

    [4]

    Hu H, Zhou S, Liu X T, Gao Y L, Gui C Q, Liu S 2017 Sci. Rep. 7 44627Google Scholar

    [5]

    Sharif M N, Niass M I, Liou J J, Wang F, Liu Y 2021 Superlattice. Microstruct. 158 107022Google Scholar

    [6]

    Nagasawa Y, Hirano A 2018 Appl. Sci. (Basel) 8 1264Google Scholar

    [7]

    Zhang D Y, Chu C S, Tian K K, Kou J Q, Bi W G, Zhang Y H, Zhang Z H 2020 AIP Adv. 10 065032Google Scholar

    [8]

    Lobo-Ploch N, Mehnke F, Sulmoni L, Cho H K, Guttmann M, Glaab J, Hilbrich K, Wernicke T, Einfeldt S, Kneissl M 2020 Appl. Phys. Lett. 117 111102Google Scholar

    [9]

    Sun Y H, Xu F J, Xie N, Wang J M, Zhang N, Lang J, Liu B Y, Fang X Z, Wang L B, Ge W K, Kang X N, Qin Z X, Yang X L, Wang X Q, Shen B 2020 Appl. Phys. Lett. 116 212102Google Scholar

    [10]

    Hu H P, Tang B, Wan H, Sun H D, Zhou S J, Dai J N, Chen C Q, Liu S, Guo L J 2020 Nano Energy 69 104427Google Scholar

    [11]

    Meneghini M, La Grassa M, Vaccari S, Galler B, Zeisel R, Drechsel P, Hahn B, Meneghesso G, Zanoni E 2014 Appl. Phys. Lett. 104 113505Google Scholar

    [12]

    Tian K K, Chu C S, Shao H, Che J M, Kou J Q, Fang M Q, Zhang Y H, Bi W G, Zhang Z H 2018 Superlattice. Microstruct. 122 280Google Scholar

    [13]

    Sun J, Sun H Q, Yi X Y, Yang X, Liu T Y, Wang X, Zhang X, Fan X C, Zhang Z D, Guo Z Y 2017 Superlattice. Microstruct. 107 49Google Scholar

    [14]

    Yu H B, Chen Q, Ren Z J, Tian M, Long S B, Dai J N, Chen C Q, Sun H D 2019 IEEE Photonics J. 11 1Google Scholar

    [15]

    Cao Y W, Lv Q J, Yang T P, Mi T T, Wang X W, Liu W, Liu J L 2023 Micro Nanostruct. 175 207489Google Scholar

    [16]

    So B, Kim J, Kwak T, Kim T, Lee J, Choi U, Nam O 2018 RSC Adv. 8 35528Google Scholar

    [17]

    Zhao F Y, Wei J, Dong H L, Jia Z G, Li T B, Yu C Y, Zhang Z X, Xu B S 2022 Aip Adv. 12 125003Google Scholar

    [18]

    Wang L Y, He W, Zheng T, Chen Z X, Zheng S W 2019 Superlattice. Microstruct. 133 106188Google Scholar

    [19]

    Usman M, Jamil T, Malik S, Jamal H 2021 Optik 232 166528Google Scholar

    [20]

    Cao Y W, Lv Q J, Yang T P, Mi T T, Wang X W, Liu W, Liu J L 2023 J. Lumin. 257 119699Google Scholar

    [21]

    Kim K S, Han D P, Kim H S, Shim J I 2014 Appl. Phys. Lett. 104 091110Google Scholar

    [22]

    Cao X A, Teetsov J M, D’evelyn M P, Merfeld D W, Yan C H 2004 Appl. Phys. Lett. 85 7Google Scholar

    [23]

    王福学, 叶煊超 2017 发光学报 38 6Google Scholar

    Wang F X, Ye X C 2017 Chin. J. Lumin. 38 6Google Scholar

    [24]

    Schubert M F, Schubert E F 2010 Appl. Phys. Lett. 96 131102Google Scholar

    [25]

    Lv Q J, Gao J D, Tao X X, Zhang J L, Mo C L, Wang X L, Zheng C D, Liu J L 2020 J. Lumin. 222 117186Google Scholar

    [26]

    Grillot P N, Krames M R, Zhao H, Teoh S H 2006 IEEE Trans. Device Mater. Rel. 6 564Google Scholar

    [27]

    毛清华, 江风益, 程海英, 郑畅达 2010 物理学报 59 8078Google Scholar

    Mao Q H, Jiang F Y, Cheng H Y, Zheng C D 2010 Acta Phys. Sin. 59 8078Google Scholar

    [28]

    Dai Q, Shan Q F, Wang J, Chhajed S, Cho J, Schubert E F, Crawford M H, Koleske D D, Kim M H, Park Y 2010 Appl. Phys. Lett. 97 133507Google Scholar

    [29]

    Yun J, Shim J I, Hirayama H 2015 Appl. Phys. Express 3 8 022104Google Scholar

    [30]

    Cao X A, Stokes E B, Sandvik P M, Leboeuf S F, Kretchmer J, Walker D 2002 IEEE Electr. Device Lett. 23 535Google Scholar

    [31]

    Lv Q J, Liu J L, Mo C L, Zhang J L, Wu X M, Wu Q F, Jiang F Y 2019 ACS Photonics 6 130Google Scholar

    [32]

    Yamaguchi M, Yamamoto A, Tachikawa M, Itoh Y, Sugo M 1988 Appl. Phys. Lett. 53 2293Google Scholar

  • 图 1  AlGaN基DUV-LEDs外延结构示意图(右)和四组不同的SL-EBL周期数(左)

    Fig. 1.  Schematic of epitaxial structure for AlGaN-based DUV-LEDs (right) and the schematic of four different period numbers of SL-EBL (left).

    图 2  不同SL-EBL周期数样品的实验结果 (a)光输出功率以及外量子效率随电流的变化; (b)电光转换效率随电流的变化; (c) I-V曲线; (d)在100 mA注入电流下发光强度随峰值波长的变化

    Fig. 2.  Experimental results for different samples: (a) LOP, EQE and (b) WPE as a function of current density; (c) experimentally measured I-V curves in logarithmic coordinates; (d) EL emission spectrums of DUV-LEDs at 100 mA.

    图 3  (a)—(d)不同老化时间下样品A, B, C和D的 EQE 随电流的变化; 具有不同SL-EBL周期数的样品A, B, C和D在老化过程中测得的在(e)小电流以及(f)工作电流下的归一化光输出功率, (f)中插图为样品A在不同老化时间下的归一化电致发光光谱

    Fig. 3.  The EQE characteristic curves of samples (a) A, (b) B, (c) C, and (d) D after aging; (e) the normalized output power of (e) low injection current and (f) working current of samples A, B, C and D during aging period; the illustration in panel (f) shows the electroluminescence spectra of sample A under different stress time.

    图 4  电流密度为75 A/cm2 时模拟的不同周期数SL-EBL DUV-LEDs样品的能带示意图 (a) 样品A; (b) 样品B; (c) 样品C; (d) 样品D

    Fig. 4.  Calculated band structure and the Femi energy level in EBL under current density of 75 A /cm2 for sample (a) A, (b) B, (c) C and (d) D.

    图 5  (a)样品A和样品C的 EQE曲线与ABC模型的理论拟合, 其中实验数据用点表示, ABC模型拟合数据用实线表示; (b)样品A和样品C在老化前后双对数坐标L-I 曲线; (c)样品A和样品C在老化前后的S

    Fig. 5.  (a) Experimentally measured EQE vs. current density (solid dot) and theoretical ABC model (solid line) fits for sample A and C; (b) LOP and (c) slope (S ) as functions of current density for sample A and C.

  • [1]

    冯丽雅, 路慧敏, 朱一帆, 陈毅勇, 于彤军, 王建萍 2023 物理学报 72 048502Google Scholar

    Feng L Y, Lu H M, Zhu Y F, Chen Y Y, Yu T J, Wang J P 2023 Acta Phys. Sin. 72 048502Google Scholar

    [2]

    Kneissl M, Seong T Y, Han J, Amano H 2019 Nat. Photonics 13 233Google Scholar

    [3]

    Du P, Shi L, Liu S, Zhou S J 2022 Micro Nanostruct. 163 107150Google Scholar

    [4]

    Hu H, Zhou S, Liu X T, Gao Y L, Gui C Q, Liu S 2017 Sci. Rep. 7 44627Google Scholar

    [5]

    Sharif M N, Niass M I, Liou J J, Wang F, Liu Y 2021 Superlattice. Microstruct. 158 107022Google Scholar

    [6]

    Nagasawa Y, Hirano A 2018 Appl. Sci. (Basel) 8 1264Google Scholar

    [7]

    Zhang D Y, Chu C S, Tian K K, Kou J Q, Bi W G, Zhang Y H, Zhang Z H 2020 AIP Adv. 10 065032Google Scholar

    [8]

    Lobo-Ploch N, Mehnke F, Sulmoni L, Cho H K, Guttmann M, Glaab J, Hilbrich K, Wernicke T, Einfeldt S, Kneissl M 2020 Appl. Phys. Lett. 117 111102Google Scholar

    [9]

    Sun Y H, Xu F J, Xie N, Wang J M, Zhang N, Lang J, Liu B Y, Fang X Z, Wang L B, Ge W K, Kang X N, Qin Z X, Yang X L, Wang X Q, Shen B 2020 Appl. Phys. Lett. 116 212102Google Scholar

    [10]

    Hu H P, Tang B, Wan H, Sun H D, Zhou S J, Dai J N, Chen C Q, Liu S, Guo L J 2020 Nano Energy 69 104427Google Scholar

    [11]

    Meneghini M, La Grassa M, Vaccari S, Galler B, Zeisel R, Drechsel P, Hahn B, Meneghesso G, Zanoni E 2014 Appl. Phys. Lett. 104 113505Google Scholar

    [12]

    Tian K K, Chu C S, Shao H, Che J M, Kou J Q, Fang M Q, Zhang Y H, Bi W G, Zhang Z H 2018 Superlattice. Microstruct. 122 280Google Scholar

    [13]

    Sun J, Sun H Q, Yi X Y, Yang X, Liu T Y, Wang X, Zhang X, Fan X C, Zhang Z D, Guo Z Y 2017 Superlattice. Microstruct. 107 49Google Scholar

    [14]

    Yu H B, Chen Q, Ren Z J, Tian M, Long S B, Dai J N, Chen C Q, Sun H D 2019 IEEE Photonics J. 11 1Google Scholar

    [15]

    Cao Y W, Lv Q J, Yang T P, Mi T T, Wang X W, Liu W, Liu J L 2023 Micro Nanostruct. 175 207489Google Scholar

    [16]

    So B, Kim J, Kwak T, Kim T, Lee J, Choi U, Nam O 2018 RSC Adv. 8 35528Google Scholar

    [17]

    Zhao F Y, Wei J, Dong H L, Jia Z G, Li T B, Yu C Y, Zhang Z X, Xu B S 2022 Aip Adv. 12 125003Google Scholar

    [18]

    Wang L Y, He W, Zheng T, Chen Z X, Zheng S W 2019 Superlattice. Microstruct. 133 106188Google Scholar

    [19]

    Usman M, Jamil T, Malik S, Jamal H 2021 Optik 232 166528Google Scholar

    [20]

    Cao Y W, Lv Q J, Yang T P, Mi T T, Wang X W, Liu W, Liu J L 2023 J. Lumin. 257 119699Google Scholar

    [21]

    Kim K S, Han D P, Kim H S, Shim J I 2014 Appl. Phys. Lett. 104 091110Google Scholar

    [22]

    Cao X A, Teetsov J M, D’evelyn M P, Merfeld D W, Yan C H 2004 Appl. Phys. Lett. 85 7Google Scholar

    [23]

    王福学, 叶煊超 2017 发光学报 38 6Google Scholar

    Wang F X, Ye X C 2017 Chin. J. Lumin. 38 6Google Scholar

    [24]

    Schubert M F, Schubert E F 2010 Appl. Phys. Lett. 96 131102Google Scholar

    [25]

    Lv Q J, Gao J D, Tao X X, Zhang J L, Mo C L, Wang X L, Zheng C D, Liu J L 2020 J. Lumin. 222 117186Google Scholar

    [26]

    Grillot P N, Krames M R, Zhao H, Teoh S H 2006 IEEE Trans. Device Mater. Rel. 6 564Google Scholar

    [27]

    毛清华, 江风益, 程海英, 郑畅达 2010 物理学报 59 8078Google Scholar

    Mao Q H, Jiang F Y, Cheng H Y, Zheng C D 2010 Acta Phys. Sin. 59 8078Google Scholar

    [28]

    Dai Q, Shan Q F, Wang J, Chhajed S, Cho J, Schubert E F, Crawford M H, Koleske D D, Kim M H, Park Y 2010 Appl. Phys. Lett. 97 133507Google Scholar

    [29]

    Yun J, Shim J I, Hirayama H 2015 Appl. Phys. Express 3 8 022104Google Scholar

    [30]

    Cao X A, Stokes E B, Sandvik P M, Leboeuf S F, Kretchmer J, Walker D 2002 IEEE Electr. Device Lett. 23 535Google Scholar

    [31]

    Lv Q J, Liu J L, Mo C L, Zhang J L, Wu X M, Wu Q F, Jiang F Y 2019 ACS Photonics 6 130Google Scholar

    [32]

    Yamaguchi M, Yamamoto A, Tachikawa M, Itoh Y, Sugo M 1988 Appl. Phys. Lett. 53 2293Google Scholar

  • [1] 任兴, 于宏宇, 张勇. 基于BCPO发光材料近紫外有机发光二极管的电致发光效率与稳定性. 物理学报, 2024, 73(4): 047801. doi: 10.7498/aps.73.20231301
    [2] 吴晓旭, 龙军华, 孙强健, 王霞, 陈志韬, 于梦璐, 罗骁龙, 李雪飞, 赵沪隐, 陆书龙. GaInP/GaAs太阳电池的柔性封装及稳定性. 物理学报, 2023, 72(13): 138803. doi: 10.7498/aps.72.20230352
    [3] 孟婧, 高博文. 新型高效率和高稳定性钙钛矿/有机集成太阳电池光伏性能研究. 物理学报, 2023, 72(1): 018802. doi: 10.7498/aps.72.20221120
    [4] 王润, 贾亚兰, 张月, 马兴娟, 徐强, 朱志新, 邓艳红, 熊祖洪, 高春红. 基于激子阻挡层的高效率绿光钙钛矿电致发光二极管. 物理学报, 2020, 69(3): 038501. doi: 10.7498/aps.69.20191263
    [5] 符民, 文尚胜, 夏云云, 向昌明, 马丙戌, 方方. GaN基通孔垂直结构的发光二极管失效分析. 物理学报, 2017, 66(4): 048501. doi: 10.7498/aps.66.048501
    [6] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究. 物理学报, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [7] 刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢. 氧化锌锡作为电子传输层的量子点发光二极管. 物理学报, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [8] 陈峻, 范广涵, 张运炎. 选择性p型量子阱垒层掺杂在双波长发光二极管光谱调控中的作用. 物理学报, 2012, 61(8): 088502. doi: 10.7498/aps.61.088502
    [9] 张永进, 宋伟才. 强度应力干涉下多态多系统的可靠性研究. 物理学报, 2011, 60(2): 021201. doi: 10.7498/aps.60.021201
    [10] 杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维. 有机发光二极管光取出技术研究进展. 物理学报, 2011, 60(4): 047809. doi: 10.7498/aps.60.047809
    [11] 马凤英, 苏建坡, 郭茂田, 池泉, 陈明, 余振芳. 微腔面发射器件外量子效率研究. 物理学报, 2011, 60(6): 064203. doi: 10.7498/aps.60.064203
    [12] 王兵, 李志聪, 姚然, 梁萌, 闫发旺, 王国宏. GaN基发光二极管外延中p型AlGaN电子阻挡层的优化生长. 物理学报, 2011, 60(1): 016108. doi: 10.7498/aps.60.016108
    [13] 周文, 刘红侠. 有丢失物缺陷的铜互连线中位寿命的定量研究. 物理学报, 2009, 58(11): 7716-7721. doi: 10.7498/aps.58.7716
    [14] 张永进, 汪忠志. 一类分时冗余系统的累伤可靠性模型及其参数估计. 物理学报, 2009, 58(9): 6074-6079. doi: 10.7498/aps.58.6074
    [15] 林瀚, 刘守, 张向苏, 刘宝林, 任雪畅. 全息技术制作二维光子晶体蓝宝石衬底提高发光二极管外量子效率. 物理学报, 2009, 58(2): 959-963. doi: 10.7498/aps.58.959
    [16] 王 俊, 王 磊, 董业民, 邹 欣, 邵 丽, 李文军, 杨华岳. 高压双扩散漏端MOS晶体管双峰衬底电流的形成机理及其影响. 物理学报, 2008, 57(7): 4492-4496. doi: 10.7498/aps.57.4492
    [17] 谢国锋, 何旭洪, 童节娟, 郑艳华. 响应面方法计算HTR-10余热排出系统物理过程的失效概率. 物理学报, 2007, 56(6): 3192-3197. doi: 10.7498/aps.56.3192
    [18] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征. 物理学报, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [19] 赵 毅, 万星拱. 0.18μm CMOS工艺栅极氧化膜可靠性的衬底和工艺依存性. 物理学报, 2006, 55(6): 3003-3006. doi: 10.7498/aps.55.3003
    [20] 刘红侠, 郑雪峰, 郝 跃. 闪速存储器中应力诱生漏电流的产生机理. 物理学报, 2005, 54(12): 5867-5871. doi: 10.7498/aps.54.5867
计量
  • 文章访问数:  2173
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-14
  • 修回日期:  2024-03-22
  • 上网日期:  2024-04-24
  • 刊出日期:  2024-06-20

/

返回文章
返回