-
金属卤化物钙钛矿材料由于具有高的光致发光量子产率、高色纯度、带隙可调等杰出的光学性能, 被作为发光材料广泛地用于制备钙钛矿电致发光二极管(perovskite light-emitting diodes, PeLEDs). 虽然取得了较好的研究进展, 但是其效率和稳定性还未达到商业化的要求, 还需要进一步提高. 为了提高PeLEDs的效率和稳定性, 本文使用旋涂法, 引入了一种具有宽带隙和较好空穴传输能力的有机小分子材料4,4′-cyclohexylidenebis [N,N-bis (p-tolyl) aniline] (TAPC) 作为激子阻挡层, 获得了效率和寿命都得到提高的全无机PeLEDs. 研究表明, PeLEDs效率和寿命得到提高的物理机制主要源于两方面: 1) TAPC具有恰当的最高占有分子轨道能级, 与PEDOT:PSS的最高占有分子轨道能级和CsPbBr3的价带边形成了阶梯式能级分布, 有利于空穴注入和传输; 同时TAPC具有较高的最低未占分子轨道能级, 能够有效地阻止电子泄漏到阳极端, 并能很好地将电子和激子限制在发光层内; 2) TAPC层的引入可以避免钙钛矿发光层与强酸性的空穴注入材料Poly(3,4-ethylenedioxythiophene):poly(p-styrene sulfonate) (PEDOT:PSS)的直接接触, 进而免除钙钛矿发光层由于与PEDOT: PSS的直接接触所导致的激子淬灭, 从而提高了激子的发光辐射复合率.In recent years, metal halide perovskite materials, owing to their excellent photoelectric properties including high photoluminescence quantum yield, high color purity, tunable band gap, etc., have been regarded as new-generation lighting sources and are widely used to fabricate perovskite light-emitting diodes (PeLEDs). Though great progresses have been made in recent years, neither the efficiency nor stability has not yet reached the requirements of commercialization. Thus, further improvement is needed. In this work, a small organic molecule material, namely 4,4'-cyclohexylidenebis[N,N-bis(p-tolyl)aniline] (TAPC) with a wide bandgap and a good hole transport ability, is used as an exciton blocking layer by utilizing the spin-coating method to improve the stability and efficiency of PeLEDs. Highly efficient and stable CsPbBr3 PeLEDs are finally realized. The physical mechanism related to the improved electroluminescence performance is investigated thoroughly. Firstly, the stepped energy level alignment is formed, since the highest occupied molecular orbital energy level (HOMO) of TAPC is located between the HOMO of (3,4-ethylenedioxythiophene):poly(p-styrene sulfonate) (PEDOT: PSS) and the valence band of CsPbBr3, which is beneficial to hole injection and transport. Meanwhile, the lowest unoccupied molecular orbital level of TAPC is high enough to prevent electrons from leaking into the anode effectively and confine electrons and excitons well in the emitting layer. Secondly, the introduction of the TAPC layer can avoid the direct contact between the perovskite light emitting layer and the strong acidic layer of PEDOT:PSS, thereby eliminating the related excitons quenching, which can further increase the radiative recombination.
-
Keywords:
- all inorganic halide perovskite /
- electroluminescent diodes /
- hole transport /
- exciton quenching /
- exciton blocking layer
[1] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, Stranks S D 2018 Nature 555 497Google Scholar
[2] Huang H, Raith J, Kershaw S V, Kalytchuk S, Tomanec O, Jing L H, Susha A S, Zboril R, Rogach A L 2017 Nat. Commun. 8 996Google Scholar
[3] Wang H R, Zhang X, Wu Q Q, Cao F, Yang D W, Shang Y Q, Ning Z J, Zhang W, Zheng W T, Yan Y F, Kershaw S V, Zhang L J, Rogach A L, Yang X Y 2019 Nat. Commun. 10 665Google Scholar
[4] de Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar
[5] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar
[6] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar
[7] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar
[8] Wang N, Cheng L, Ge R, Zhang S T, Miao Y F, Zou W, Yi Chang, Sun Y, Cao Y, Yang R, Wei Y Q, Guo Q, Ke Y, Yu M T, Jin Y Z, Liu Y, Ding Q Q, Di D W, Yang L, Xing G C, Tian H, Jin C H, Gao F, Friend R H, Wang J P, Huang W 2016 Nature Photon. 10 699Google Scholar
[9] Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar
[10] Lin K, Xing J, Quan L N, de Arquer F G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E. H., Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar
[11] Cao Y, Wang N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, J in Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar
[12] Xu W, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kaweck M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photon. 13 418Google Scholar
[13] Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X 2019 Adv. Mater. 31 1901517
[14] Turkevych I, Kazaoui S, Belich N A, Grishko A Y, Fateev S A, Petrov A A, Urano T, Aramaki S, Kosar S, Kondo M, Goodilin E A, Graetzel M, Tarasov A B 2019 Nat. Nanotechnol. 14 57Google Scholar
[15] Tavakoli M M, Yadav P, Prochowicz D, Sponspeller M, Osheov A, Bulovic V, Kong J 2019 Adv. Energy Mater. 9 1803587Google Scholar
[16] Brenner P, Stulz M, Kapp D, Abzieher T, Paetzold U W, Quintilla A, Howard I A, Kalt H, Lemmer H 2016 Appl. Phys. Lett. 109 141106Google Scholar
[17] Wang Y C, Li H, Hong Y H, Hong K B, Chen F C, Hsu C H, Lee R K, Conti C, Kao T S, Lu T C 2019 ACS Nano 13 5421Google Scholar
[18] Ji L, Hsu H Y, Lee J C, Bard A J, Yu E T 2018 Nano Lett. 18 994Google Scholar
[19] Tian C C, Wang F, Wang Y P, Yang Z, Chen X J, Mei J J, Liu H Z, Zhao D X 2019 ACS Appl. Mater. Interfaces 11 15804Google Scholar
[20] Han D B, Imran M, Zhang M J, Chang S, Wu X G, Zhang X, Tang J L, Wang M S, Ali S S, Li X G, Yu G, Han J B, Wang L X, Zou B S, Zhong H Z 2018 ACS Nano 12 8808Google Scholar
[21] Gao C H, Yu F X, Xiong Z Y, Dong Y J, Ma X J, Zhang Y, Jia Y L, Wang R, Chen P, Zhou D Y, Xiong Z H 2019 Org. Electron. 70 264Google Scholar
[22] Zhao L F, Lee K M, Roh K D, Khan S U Z, Rand B P 2019 Adv. Mater. 31 1805836Google Scholar
[23] Braly I L, deQuilettes D W, Pazos-Outón L M, Burke S, Ziffer M E, Ginger D S, Hillhouse H W 2018 Nat. Photon. 12 355Google Scholar
[24] Zhang X, Xu B, Zhang J B, Gao Y, Zheng Y J, Wang K, Sun X W 2016 Adv. Funct. Mater. 26 4595Google Scholar
[25] Gangishetty M K, Sanders S N, Congreve D N 2019 ACS Photonics 6 1111Google Scholar
[26] Zhang X L, Liu H, Wang W G, Zhang J B, Xu B, Karen K L, Zheng Y J, Liu S, Cheng S M, Wang K, Sun X W 2017 Adv. Mater. 29 1606405Google Scholar
[27] Chen P, Xiong Z Y, Wu X Y, Shao M, Ma X J, Xiong Z H, Gao C H 2017 J. Phys. Chem. Lett. 8 1810Google Scholar
[28] Yu J C, Kim D W, Kim D B, Jung E D, Lee K S, Lee S B, Nuzzo D D, Kim J S, Song M H 2017 Nanoscale 9 2088Google Scholar
[29] 段聪聪, 程露, 殷垚, 朱琳 2019 物理学报 68 158503Google Scholar
Duan C C, Chen L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar
[30] 瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar
Qu Z H, Chen Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar
[31] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 物理学报 68 158505Google Scholar
Li Z C, Chen Z M, Zou G R X, Yip H L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar
[32] 楼浩然, 叶志镇, 何海平, 2019 物理学报 68 157102Google Scholar
Lou H R, Ye Z Z, He H P 2019 Acta. Phys. Sin. 68 157102Google Scholar
[33] Lu B Y, Yuk H, Lin S T, Jian N N, Qu K, Xu J K, Zhao X H 2019 Nat. Commun. 10 1043Google Scholar
[34] Kim Y H, Cho H C, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar
[35] Peng X F, Wu X Y, Ji X X, Ren J, Wang Q, Li G Q, Yang X H 2017 J. Phys. Chem. Lett. 8 4691Google Scholar
[36] Wang Z J, Li Z R, Zhou D L, Yu J S 2017 Appl. Phys. Lett. 111 233304Google Scholar
[37] Lin C Y, Chen P, Xiong Z Y, Liu D B, Wang G, Meng Y, Song Q L 2018 Nanotechnology 29 075203Google Scholar
[38] Zou Y T, Ban M Y, Yang Y G, Bai S, Wu C, Han Y J, Wu T, Tan Y S, Huang Q, Gao X Y, Song T, Zhao Q, Sun B Q 2018 ACS Appl. Mater. Interfaces 10 24320Google Scholar
[39] Meng Y, Ahmadi M, Wu X Y, Xu T F, Xu L, Xiong Z H, Chen P 2019 Org. Electron. 64 47Google Scholar
[40] Kim S Y, Jeong W, Mayr C, Park Y S, Kim K H, Lee J H, Moon C K 2013 Adv. Funct. Mater. 23 3896Google Scholar
[41] Cui L S, Liu Y, Yuan X D, Li Q, Jiang Z Q, Liao L S 2013 J. Mater. Chem. C 1 8177Google Scholar
[42] Yu F X, Zhang Y, Xiong Z Y, Ma X J, Chen P, Xiong Z H, Gao C H 2017 Org. Electron. 50 480Google Scholar
[43] Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar
[44] Ban M Y, Zou Y T, Pivett J P.H., Yang Y G, Thomas T H, Tan Y, Song T, Gao X Y, Credington D, Deschler F, Sirringhaus H, Sun B Q 2018 Nat. Commun. 9 3892Google Scholar
[45] Dai X L, Deng Y Z, Peng X G, Jin Y Z 2017 Adv. Mater. 29 1607022Google Scholar
[46] Wu T, Yang Y G, Zou Y T, Wang Y S, Wu C, Han Y J, Song T, Zhang Q, Gao X Y, Sun B Q 2018 Nanoscale 10 19322Google Scholar
[47] Kim Y H, Wolf C, Kim Y T, Cho H C, Kwon W S, Do S G, Sadhanala A, Park C G, Rhee S W, Im S H, Friend H F, Lee T W 2017 ACS Nano 11 6586Google Scholar
[48] Zheng K B, Zidek K, Abdellah M, Messing M E, Al-Marri M J, Pullerits T 2016 J. Phys. Chem. C 120 3077
[49] Liu M, Zhang Y, Wang S X, Guo J, Yu W W, Rogach A L 2019 Adv. Funct. Mater. 29 1902008
-
图 2 PeLEDs的EL性能表征 (a)电流密度-电压; (b)亮度-电压; (c)电流效率-电压-外量子效率; (d) PeLEDs (TAPC浓度为5 mg/mL)在不同电压下的EL光谱, 内插图是不同TAPC浓度的PeLEDs在电压为5 V时的归一化EL谱
Fig. 2. EL performance of PeLEDs: (a) Current density-voltage (J-V); (b) luminance-voltage (L-V); (c) current-efficiency-voltage-external quantum efficiency (CE-V-EQE); (d) EL spectra of PeLEDs with 5 mg/mL TAPC at different applied voltages; the inset is normalized EL spectra of PeLEDs with different concentrations of TAPC at the same applied voltage of 5 V.
图 4 (a) ITO/PEDOT:PSS/CsPbBr3和(b) ITO/PEDOT:PSS/TAPC/CsPbBr3样品的SEM图; (c) ITO/PEDOT:PSS/CsPbBr3和(d) ITO/PEDOT:PSS/TAPC/CsPbBr3样品的CsPbBr3颗粒尺寸统计分布
Fig. 4. SEM images of (a) ITO/PEDOT:PSS/CsPbBr3 and (b) ITO/PEDOT:PSS/TAPC/CsPbBr3; the size distribution of CsPbBr3 grain on (c) ITO/PEDOT:PSS/CsPbBr3 and (d) ITO/PEDOT:PSS/TAPC/CsPbBr3.
图 5 在PEDOT:PSS和PEDOT:PSS/TAPC衬底上的CsPbBr3薄膜的表征 (a)晶体结构(XRD); (b)紫外吸收, 内插图是在500−518 nm波长范围吸收的放大图; (c) PL光谱, 内插图是在520−535 nm波长范围PL的放大图; (d) TRPL曲线
Fig. 5. Characteristics of CsPbBr3 film on PEDOT:PSS and PEDOT:PSS/TAPC: (a) XRD; (b) absorption, and the inset is a large image of normalized PL spectra from 500 to 518 nm; (c) normalized PL spectra, and the inset is a large image of normalized PL spectra from 520 to 535 nm; (d) TRPL decay curves.
表 1 PeLEDs性能
Table 1. List of EL performance of PeLEDs.
器件 TAPC浓度/mg·mL–1 最大亮度/cd·m–2 最大电流效率/cd·A–1 外量子效率/% 色坐标(x, y) A 0 2396 1.81 0.47 (0.13, 0.80) B 2 6081 4.52 1.17 (0.13, 0.80) C 5 13198 6.84 1.77 (0.13, 0.80) D 8 3678 1.13 0.29 (0.13, 0.80) 表 2 瞬态荧光寿命参数统计列表
Table 2. List of TRPL parameters.
Films B1/% B2/% τ1/ns τ2/ns τave/ns PEDOT:PSS/CsPbBr3 79 21 4.86 210.45 47.44 PEDOT:PSS/TAPC/CsPbBr3 75 25 5.72 212.65 57.64 -
[1] Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, Stranks S D 2018 Nature 555 497Google Scholar
[2] Huang H, Raith J, Kershaw S V, Kalytchuk S, Tomanec O, Jing L H, Susha A S, Zboril R, Rogach A L 2017 Nat. Commun. 8 996Google Scholar
[3] Wang H R, Zhang X, Wu Q Q, Cao F, Yang D W, Shang Y Q, Ning Z J, Zhang W, Zheng W T, Yan Y F, Kershaw S V, Zhang L J, Rogach A L, Yang X Y 2019 Nat. Commun. 10 665Google Scholar
[4] de Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar
[5] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar
[6] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar
[7] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar
[8] Wang N, Cheng L, Ge R, Zhang S T, Miao Y F, Zou W, Yi Chang, Sun Y, Cao Y, Yang R, Wei Y Q, Guo Q, Ke Y, Yu M T, Jin Y Z, Liu Y, Ding Q Q, Di D W, Yang L, Xing G C, Tian H, Jin C H, Gao F, Friend R H, Wang J P, Huang W 2016 Nature Photon. 10 699Google Scholar
[9] Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar
[10] Lin K, Xing J, Quan L N, de Arquer F G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E. H., Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar
[11] Cao Y, Wang N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, J in Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar
[12] Xu W, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kaweck M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photon. 13 418Google Scholar
[13] Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X 2019 Adv. Mater. 31 1901517
[14] Turkevych I, Kazaoui S, Belich N A, Grishko A Y, Fateev S A, Petrov A A, Urano T, Aramaki S, Kosar S, Kondo M, Goodilin E A, Graetzel M, Tarasov A B 2019 Nat. Nanotechnol. 14 57Google Scholar
[15] Tavakoli M M, Yadav P, Prochowicz D, Sponspeller M, Osheov A, Bulovic V, Kong J 2019 Adv. Energy Mater. 9 1803587Google Scholar
[16] Brenner P, Stulz M, Kapp D, Abzieher T, Paetzold U W, Quintilla A, Howard I A, Kalt H, Lemmer H 2016 Appl. Phys. Lett. 109 141106Google Scholar
[17] Wang Y C, Li H, Hong Y H, Hong K B, Chen F C, Hsu C H, Lee R K, Conti C, Kao T S, Lu T C 2019 ACS Nano 13 5421Google Scholar
[18] Ji L, Hsu H Y, Lee J C, Bard A J, Yu E T 2018 Nano Lett. 18 994Google Scholar
[19] Tian C C, Wang F, Wang Y P, Yang Z, Chen X J, Mei J J, Liu H Z, Zhao D X 2019 ACS Appl. Mater. Interfaces 11 15804Google Scholar
[20] Han D B, Imran M, Zhang M J, Chang S, Wu X G, Zhang X, Tang J L, Wang M S, Ali S S, Li X G, Yu G, Han J B, Wang L X, Zou B S, Zhong H Z 2018 ACS Nano 12 8808Google Scholar
[21] Gao C H, Yu F X, Xiong Z Y, Dong Y J, Ma X J, Zhang Y, Jia Y L, Wang R, Chen P, Zhou D Y, Xiong Z H 2019 Org. Electron. 70 264Google Scholar
[22] Zhao L F, Lee K M, Roh K D, Khan S U Z, Rand B P 2019 Adv. Mater. 31 1805836Google Scholar
[23] Braly I L, deQuilettes D W, Pazos-Outón L M, Burke S, Ziffer M E, Ginger D S, Hillhouse H W 2018 Nat. Photon. 12 355Google Scholar
[24] Zhang X, Xu B, Zhang J B, Gao Y, Zheng Y J, Wang K, Sun X W 2016 Adv. Funct. Mater. 26 4595Google Scholar
[25] Gangishetty M K, Sanders S N, Congreve D N 2019 ACS Photonics 6 1111Google Scholar
[26] Zhang X L, Liu H, Wang W G, Zhang J B, Xu B, Karen K L, Zheng Y J, Liu S, Cheng S M, Wang K, Sun X W 2017 Adv. Mater. 29 1606405Google Scholar
[27] Chen P, Xiong Z Y, Wu X Y, Shao M, Ma X J, Xiong Z H, Gao C H 2017 J. Phys. Chem. Lett. 8 1810Google Scholar
[28] Yu J C, Kim D W, Kim D B, Jung E D, Lee K S, Lee S B, Nuzzo D D, Kim J S, Song M H 2017 Nanoscale 9 2088Google Scholar
[29] 段聪聪, 程露, 殷垚, 朱琳 2019 物理学报 68 158503Google Scholar
Duan C C, Chen L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar
[30] 瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar
Qu Z H, Chen Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar
[31] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 物理学报 68 158505Google Scholar
Li Z C, Chen Z M, Zou G R X, Yip H L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar
[32] 楼浩然, 叶志镇, 何海平, 2019 物理学报 68 157102Google Scholar
Lou H R, Ye Z Z, He H P 2019 Acta. Phys. Sin. 68 157102Google Scholar
[33] Lu B Y, Yuk H, Lin S T, Jian N N, Qu K, Xu J K, Zhao X H 2019 Nat. Commun. 10 1043Google Scholar
[34] Kim Y H, Cho H C, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar
[35] Peng X F, Wu X Y, Ji X X, Ren J, Wang Q, Li G Q, Yang X H 2017 J. Phys. Chem. Lett. 8 4691Google Scholar
[36] Wang Z J, Li Z R, Zhou D L, Yu J S 2017 Appl. Phys. Lett. 111 233304Google Scholar
[37] Lin C Y, Chen P, Xiong Z Y, Liu D B, Wang G, Meng Y, Song Q L 2018 Nanotechnology 29 075203Google Scholar
[38] Zou Y T, Ban M Y, Yang Y G, Bai S, Wu C, Han Y J, Wu T, Tan Y S, Huang Q, Gao X Y, Song T, Zhao Q, Sun B Q 2018 ACS Appl. Mater. Interfaces 10 24320Google Scholar
[39] Meng Y, Ahmadi M, Wu X Y, Xu T F, Xu L, Xiong Z H, Chen P 2019 Org. Electron. 64 47Google Scholar
[40] Kim S Y, Jeong W, Mayr C, Park Y S, Kim K H, Lee J H, Moon C K 2013 Adv. Funct. Mater. 23 3896Google Scholar
[41] Cui L S, Liu Y, Yuan X D, Li Q, Jiang Z Q, Liao L S 2013 J. Mater. Chem. C 1 8177Google Scholar
[42] Yu F X, Zhang Y, Xiong Z Y, Ma X J, Chen P, Xiong Z H, Gao C H 2017 Org. Electron. 50 480Google Scholar
[43] Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar
[44] Ban M Y, Zou Y T, Pivett J P.H., Yang Y G, Thomas T H, Tan Y, Song T, Gao X Y, Credington D, Deschler F, Sirringhaus H, Sun B Q 2018 Nat. Commun. 9 3892Google Scholar
[45] Dai X L, Deng Y Z, Peng X G, Jin Y Z 2017 Adv. Mater. 29 1607022Google Scholar
[46] Wu T, Yang Y G, Zou Y T, Wang Y S, Wu C, Han Y J, Song T, Zhang Q, Gao X Y, Sun B Q 2018 Nanoscale 10 19322Google Scholar
[47] Kim Y H, Wolf C, Kim Y T, Cho H C, Kwon W S, Do S G, Sadhanala A, Park C G, Rhee S W, Im S H, Friend H F, Lee T W 2017 ACS Nano 11 6586Google Scholar
[48] Zheng K B, Zidek K, Abdellah M, Messing M E, Al-Marri M J, Pullerits T 2016 J. Phys. Chem. C 120 3077
[49] Liu M, Zhang Y, Wang S X, Guo J, Yu W W, Rogach A L 2019 Adv. Funct. Mater. 29 1902008
计量
- 文章访问数: 14784
- PDF下载量: 192
- 被引次数: 0