搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锡基钙钛矿的研究进展及其在发光二极管中的应用

余毅 安治东 蔡晓艺 郭明磊 敬承斌 李艳青

引用本文:
Citation:

锡基钙钛矿的研究进展及其在发光二极管中的应用

余毅, 安治东, 蔡晓艺, 郭明磊, 敬承斌, 李艳青

Recent progress of tin-based perovskites and their applications in light-emitting diodes

Yu Yi, An Zhi-Dong, Cai Xiao-Yi, Guo Ming-Lei, Jing Cheng-Bin, Li Yan-Qing
PDF
HTML
导出引用
  • 卤化铅钙钛矿由于具有高吸收系数、高载流子迁移率、高缺陷容忍度和高光致发光效率等优越的光电子性能, 近年来引起了人们的广泛关注. 然而, 可能阻碍其商业应用的关键是铅元素的存在引起的毒性问题. 为了解决这一毒性问题, 谨慎而有策略地用其他无毒候选元素替代Pb2+是一个很有前途的方向. 锡具有和铅相似的结构和性质, 是目前最有希望替代铅的元素, 这也引起了研究者们广泛的兴趣及进一步的研究. 本文综述了近年来锡基钙钛矿的研究进展及其在发光二极管中的应用. 首先, 介绍了一些适合应用于发光二极管的锡基钙钛矿材料的合成方法. 然后, 分析了不同价态下锡基钙钛矿的晶体结构和光电性质. 在此基础上讨论了锡基钙钛矿材料在发光器件中的应用, 并总结了提高锡基钙钛矿性能的一些措施. 最后提出了锡基钙钛矿当前遇到的重大挑战, 并提出了可能的解决方案, 有助于实现高性能锡基卤化物钙钛矿发光二极管. 基于这篇综述, 以期对锡基卤化物材料及其在发光二极管中的应用有深入了解, 进而推动锡基钙钛矿发光二极管的发展.
    Lead halide perovskites have aroused widespread interest in recent years due to their superior optoelectronic properties, such as high absorption coefficient, high charge carrier mobility, high defect tolerance and high photoluminescence (PL) efficiency. However, one critical problem which potentially hampers their commercial applications is the toxicity caused by lead. To address this toxicity problem, a careful and strategic replacement of Pb2+ with other nontoxic candidate elements represents a promising direction. Tin (Sn), currently the most promising alternative to lead due to its structure and properties, has received extensiveattention. In this review, some recent developments of Sn-based perovskites and their applications in light-emitting diodes are summarized. Firstly, some synthesis methods of Sn-based perovskite materials are introduced. Then, the crystal structures and photoelectric properties of Sn-perovskites in different valence states are analyzed. Then, the potential application of Sn-based perovskite materials in light-emitting devices is presented and some methods to improve the performance of Sn-based PeLEDs are also summarized. Finally, the significant challenges in these Sn-based PeLEDs are pointed out and their possible solutions are suggested. It is expected that this review can conduce to an in-depth understanding of Sn-based halide materials and their application in PeLEDs.
      通信作者: 敬承斌, cbjing@ee.ecnu.edu.cn ; 李艳青, yqli@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61520106012, 61722404, 51873138)资助的课题
      Corresponding author: Jing Cheng-Bin, cbjing@ee.ecnu.edu.cn ; Li Yan-Qing, yqli@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61520106012, 61722404, 51873138)
    [1]

    Zhao X, Ng J D A, Friend R H, Tan Z K 2018 ACS Photonics 5 3866Google Scholar

    [2]

    Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [3]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [4]

    Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X 2019 Adv. Mater. 31 1901517Google Scholar

    [5]

    Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418

    [6]

    Hou L, Zhu Y H, Zhu J R, Li C Z 2019 J. Phys. Chem. C 123 31279Google Scholar

    [7]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [8]

    Cho H C, Wolf C, Kim J S, Yun H J, Bae J S, Kim H, Heo J M, Ahn S, Lee T W 2017 Adv. Mater. 29 1700579Google Scholar

    [9]

    Lu M, Zhang Y, Wang S X, Guo J, Yu W W, Rogach A L 2019 Adv. Funct. Mater. 29 1902008Google Scholar

    [10]

    Xiao Z, Yan Y F 2017 Adv. Energy Mater. 7 1701136Google Scholar

    [11]

    Gratzel M 2014 Nat. Mater. 13 838Google Scholar

    [12]

    Yin W J, Yang J H, Kang J, Yan Y F, Wei S H 2015 J. Mater. Chem. A. 3 8926Google Scholar

    [13]

    Zhao Y, Li C L, Jiang J Z, Wang B, Shen L 2020 Small 16 2001534Google Scholar

    [14]

    Li C L, Lu J R, Zhao Y, Sun L Y, Wang G X, Ma Y, Zhang S M, Zhou J R, Shen L, Huang W 2019 Small 15 1903599Google Scholar

    [15]

    Zhao Y, Li C L, Shen L 2019 Info. Mat. 1 164Google Scholar

    [16]

    Li C L, Wang H L, Wang F, Li T F, Xu M J, Wang H, Wang Z, Zhan X W, Hu W D, Shen L 2020 Light Sci. Appl. 9 31Google Scholar

    [17]

    Shen Y, Liu Y C, Ye H C, Zheng Y T, Wei Q, Xia Y D, Chen Y H, Zhao K, Huang W, Liu S F 2020 Angew. Chem. Int. Ed. 59 14896Google Scholar

    [18]

    Pan W, Yang B, Niu G, Xue K H, Du X, Yin L, Zhang M, Wu H, Miao X S, Tang J 2019 Adv. Mater. 31 1904405Google Scholar

    [19]

    Luo T, Zhang Y, Xu Z, Niu T, Wen J, Lu J, Jin S, Liu S F, Zhao K 2019 Adv. Mater. 31 1903848Google Scholar

    [20]

    Sani F, Shafie S, Lim H N, Musa A O 2018 Materials 11 1008Google Scholar

    [21]

    Wu C C, Zhang Q H, Liu G H, Zhang Z H, Wang D, Qu B, Chen Z J, Xiao L X 2020 Adv. Energy Mater. 10 1902496Google Scholar

    [22]

    Luo J J, Hu M C, Niu G D, Tang J 2019 ACS Appl. Mater. Interfaces 11 31575Google Scholar

    [23]

    Igbari F, Wang Z K, Liao L S 2019 Adv. Energy Mater. 9 1803150Google Scholar

    [24]

    Ghosh S, Pradhan B 2019 Chem. Nano. Mat. 5 300Google Scholar

    [25]

    Mao L L, Stoumpos C C, Kanatzidis M G 2019 J. Am. Chem. Soc. 141 1171Google Scholar

    [26]

    Cheng L, Jiang T, Cao Y, Yi C, Wang N N, Huang W, Wang J P 2019 Adv. Mater. 32 1904163Google Scholar

    [27]

    Grancini G, Nazeeruddin M K 2019 Nat. Reviews Mater. 4 4Google Scholar

    [28]

    Babayigit A, Ethirajan A, Muller M, Conings B 2016 Nat. Mater. 15 247Google Scholar

    [29]

    Fan Q Q, Biesold-McGee G V, Ma J Z, Xu Q N, Pan S, Peng J, Lin Z Q 2020 Angew. Chem. Int. Ed. 59 1030Google Scholar

    [30]

    Sun J, Yang J, Lee J I, Cho J H, Kang M S 2018 J. Phys. Chem. Lett. 9 1573Google Scholar

    [31]

    Ke W J, Kanatzidis M G 2019 Nat. Commun. 10 965Google Scholar

    [32]

    Ke W J, Stoumpos C C, Kanatzidis M G 2019 Adv. Mater. 31 1803230Google Scholar

    [33]

    Meng X Y, Lin J B, Liu X, He X, Wang Y, Noda T, Wu T H, Yang X D, Han L Y 2019 Adv. Mater. 31 1903721Google Scholar

    [34]

    Liao Y Q, Liu H F, Zhou W J, Yang D W, Shang Y Q, Shi Z F, Li B H, Jiang X Y, Zhang L J, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q X, Sargent E H, Ning Z J 2017 J. Am. Chem. Soc. 139 6693Google Scholar

    [35]

    Hoefler S F, Trimmel G, Rath T 2017 Monatsh Chem. 148 795Google Scholar

    [36]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [37]

    Fang Z B, Chen W J, Shi Y L, Zhao J, Chu S L, Zhang J, Xiao Z G 2020 Adv. Funct. Mater. 30 1909754Google Scholar

    [38]

    Fu P F, Huang M L, Shang Y Q, Yu N, Zhou H L, Zhang Y B, Chen S Y, Gong J K, Ning Z J 2018 ACS Appl. Mater. Interfaces 10 34363Google Scholar

    [39]

    Liao Y, Shang Y Q, Wei Q, Wang H, Ning Z J 2020 J. Phys. D: Appl. Phys. 53 414005Google Scholar

    [40]

    Zhang X T, Wang C C, Zhang Y, Zhang X Y, Wang S X, Lu M, Cui H N, Kershaw S V, Yu W W, Rogach A L 2018 ACS Energy Lett. 4 242Google Scholar

    [41]

    Lanzetta L, Marin-Beloqui J M, Sanchez-Molina I, Ding D, Haque S A 2017 ACS Energy Lett. 2 1662Google Scholar

    [42]

    Wang Y, Zou R M, Chang J, Fu Z W, Cao Y, Zhang L D, Wei Y Q, Kong D C, Zou W, Wen K C, Fan N, Wang N N, Huang W, Wang J P 2019 J. Phys. Chem. Lett. 10 453Google Scholar

    [43]

    El Ajjouri Y, Locardi F, Gélvez-Rueda M C, Prato M, Sessolo M, Ferretti M, Grozema F C, Palazon F, Bolink H J 2019 Energy Technol. 8 1900788Google Scholar

    [44]

    Li J H, Tan Z F, Hu M C, Chen C, Luo J J, Li S R, Gao L, Xiao Z W, Niu G D, Tang J 2019 Front. Optoelectron. 12 352Google Scholar

    [45]

    Lin T W, Su C, Lin C C 2019 J. Inf. Disp. 20 209Google Scholar

    [46]

    Tan Z F, Li J H, Zhang C, Li Z, Hu Q S, Xiao Z W, Kamiya T, Hosono H, Niu G D, Lifshitz E, Cheng Y B, Tang J 2018 Adv. Funct. Mater. 28 1801131Google Scholar

    [47]

    Han P G, Mao X, Yang S Q, Zhang F, Yang B, Wei D H, Deng W Q, Han K 2019 Angew. Chem. Int. Ed. 58 17231Google Scholar

    [48]

    Luo J J, Wang X M, Li S R, Liu J, Guo Y M, Niu G D, Yao L, Fu Y H, Gao L, Dong Q S, Zhao C Y, Leng M Y, Ma F Y, Liang W X, Wang L D, Jin S Y, Han J B, Zhang L J, Etheridge J, Wang J B, Yan Y F, Sargent E H, Tang J 2018 Nature 563 541Google Scholar

    [49]

    Hao F, Stoumpos C C, Guo P J, Zhou N J, Marks T J, Chang R P, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11445Google Scholar

    [50]

    Liu J W, Ozaki M, Yakumaru S, Handa T, Nishikubo R, Kanemitsu Y, Saeki A, Murata Y, Murdey R, Wakamiya A 2018 Angew. Chem. Int. Ed. 57 13221Google Scholar

    [51]

    Zhu H L, Xiao J Y, Mao J, Zhang H, Zhao Y, Choy W C H 2017 Adv. Funct. Mater. 27 1605469Google Scholar

    [52]

    Moghe D, Wang L L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulović V, Lunt R R 2016 Nano Energy 28 469Google Scholar

    [53]

    Jung M C, Raga S R, Qi Y B 2016 RSC Adv. 6 2819Google Scholar

    [54]

    Funabiki F, Toda Y, Hosono H 2018 J. Phy. Chem. C 122 10749Google Scholar

    [55]

    Xi J, Wu Z X, Jiao B, Dong H, Ran C X, Piao C C, Lei T, Song T B, Ke W J, Yokoyama T, Hou X, Kanatzidis M G 2017 Adv. Mater. 29 1606964Google Scholar

    [56]

    Yokoyama T, Cao D H, Stoumpos C C, Song T B, Sato Y, Aramaki S, Kanatzidis M G 2016 J. Phys. Chem. Lett. 7 776Google Scholar

    [57]

    Lee B, Shin B, Park B 2019 Electron. Mater. Lett. 15 192Google Scholar

    [58]

    Hong W L, Huang Y C, Chang C Y, Zhang Z C, Tsai H R, Chang N Y, Chao Y C 2016 Adv. Mater. 28 8029Google Scholar

    [59]

    Wang Z B, Wang F Z, Zhao B, Qu S N, Hayat T, Alsaedi A, Sui L Z, Yuan K J, Zhang J Q, Wei Z X, Tan Z A 2020 J. Phys. Chem. Lett. 11 1120Google Scholar

    [60]

    Jellicoe T C, Richter J M, Glass H F, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, Bohm M L 2016 J. Am. Chem. Soc. 138 2941Google Scholar

    [61]

    Wang H C, Wang W G, Tang A C, Tsai H Y, Bao Z, Ihara T, Yarita N, Tahara H, Kanemitsu Y, Chen S M, Liu R S 2017 Angew. Chem. Int. Ed. 56 13650Google Scholar

    [62]

    Zhou C K, Tian Y, Wang M C, Rose A, Besara T, Doyle N K, Yuan Z, Wang J C, Clark R, Hu Y Y, Siegrist T, Lin S C, Ma B 2017 Angew. Chem. Int. Ed. 56 9018Google Scholar

    [63]

    Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 J. Am. Chem. Soc. 134 8579Google Scholar

    [64]

    Benin B M, Dirin D N, Morad V, Wörle M, Yakunin S, Rainò G, Nazarenko O, Fischer M, Infante I, Kovalenko M V 2018 Angew. Chem. Int. Ed. 57 11329Google Scholar

    [65]

    Yuan F, Xi J, Dong H, Xi K, Zhang W W, Ran C X, Jiao B, Hou X, Jen A K Y, Wu Z X 2018 Phys. Status Solidi RRL 12 1800090Google Scholar

    [66]

    Zhou J, Luo J J, Rong X M, Wei P J, Molokeev M S, Huang Y, Zhao J, Liu Q L, Zhang X W, Tang J, Xia Z G 2019 Adv. Opt. Mater. 7 1900139Google Scholar

    [67]

    Li C, Lu X G, Ding W Z, Feng L M, Gao Y H, Guo Z M 2008 Acta Cryst. B 64 702Google Scholar

    [68]

    Yin H, Xian Y M, Zhang Y L, Li W Z, Fan J D 2019 Sol. RRL 3 1900148Google Scholar

    [69]

    Scaife D E, Weller P F, Fisher W G 1974 J. Solid State Chem. 9 308Google Scholar

    [70]

    Lai M L, Tay T Y, Sadhanala A, Dutton S E, Li G, Friend R H, Tan Z K 2016 J. Phys. Chem. Lett. 7 2653Google Scholar

    [71]

    Bernal C, Yang K S 2014 J.Phy. Chem. C 118 24383Google Scholar

    [72]

    Goyal A, McKechnie S, Pashov D, Tumas W, van Schilfgaarde M, Stevanović V 2018 Chem. Mater. 30 3920Google Scholar

    [73]

    Liu D, Sa R, Wang J, Wu K C 2019 J. Clust. Sci. 31 1103

    [74]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. Photonics 8 489Google Scholar

    [75]

    Huang L Y, Lambrecht W R L 2013 Phys. Rev. B 88 165203Google Scholar

    [76]

    Pisanu A, Coduri M, Morana M, Ciftci Y O, Rizzo A, Listorti A, Gaboardi M, Bindi L, Queloz V I E, Milanese C, Grancini G, Malavasi L 2020 J. Mater. Chem. A 8 1875Google Scholar

    [77]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [78]

    Peedikakkandy L, Bhargava P 2016 RSC Adv. 6 19857Google Scholar

    [79]

    Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 JACS 134 8579

    [80]

    Takahashi Y, Obara R, Lin Z Z, Takahashi Y, Naito T, Inabe T, Ishibashi S, Terakura K 2011 Dalton Trans. 40 5563Google Scholar

    [81]

    Lee B, Stoumpos C C, Zhou N, Hao F, Malliakas C, Yeh C Y, Marks T J, Kanatzidis M G, Chang R P 2014 J. Am. Chem. Soc. 136 15379Google Scholar

    [82]

    Wang F, Ma J L, Xie F Y, Li L K, Chen J, Fan J, Zhao N 2016 Adv. Funct. Mater. 26 3417Google Scholar

    [83]

    Qian L, Sun Y L, Wu M M, Li C, Xie D, Ding L M, Shi G Q 2018 Nanoscale 10 6837Google Scholar

    [84]

    Lin J T, Liao C C, Hsu C S, Chen D G, Chen H M, Tsai M K, Chou P T, Chiu C W 2019 J. Am. Chem. Soc. 141 10324Google Scholar

    [85]

    Martinez-Sarti L, Jo S H, Kim Y H, Sessolo M, Palazon F, Lee T W, Bolink H J 2019 Nanoscale 11 12793Google Scholar

    [86]

    Zhou C K, Tian Y, Yuan Z, Lin H, Chen B, Clark R, Dilbeck T, Zhou Y, Hurley J, Neu J, Besara T, Siegrist T, Djurovich P, Ma B 2017 ACS Appl. Mater. Interfaces 9 44579Google Scholar

    [87]

    Zhou C K, Lin H R, Tian Y, Yuan Z, Clark R, Chen B H, van de Burgt L J, Wang J C, Zhou Y, Hanson K, Meisner Q J, Neu J, Besara T, Siegrist T, Lambers E, Djurovich P, Ma B 2018 Chem. Sci. 9 586Google Scholar

    [88]

    Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016 J. Am. Chem. Soc. 138 8453Google Scholar

    [89]

    Zimmermann I, Aghazada S, Nazeeruddin M K 2019 Angew. Chem. Int. Ed. 58 1072Google Scholar

    [90]

    Maughan A E, Ganose A M, Candia A M, Granger J T, Scanlon D O, Neilson J R 2018 Chem. Mater. 30 472Google Scholar

    [91]

    Maughan A E, Ganose A M, Almaker M A, Scanlon D O, Neilson J R 2018 Chem. Mater. 30 3909Google Scholar

    [92]

    Zhang X L, Cao W Y, Wang W G, Xu B, Liu S, Dai H T, Chen S M, Wang K, Sun X W 2016 Nano Energy 30 511Google Scholar

    [93]

    Gonzalez-Carrero S, Espallargas G M, Galian R E, Pérez-Prieto J 2015 J. Mater. Chem. A 3 14039Google Scholar

    [94]

    Wang X M, Meng W W, Liao W Q, Wang J B, Xiong R G, Yan Y F 2019 J. Phys. Chem. Lett. 10 501Google Scholar

    [95]

    Liang H Y, Yuan F L, Johnston A, Gao C C, Choubisa H, Gao Y, Wang Y K, Sagar L K, Sun B, Li P C, Bappi G, Chen B, Li J, Wang Y K, Dong Y T, Ma D X, Gao Y N, Liu Y C, Yuan M J, Saidaminov M I, Hoogland S, Lu Z H, Sargent E H 2020 Adv. Sci. 7 1903213Google Scholar

    [96]

    Kontos A G, Kaltzoglou A, Siranidi E, Palles D, Angeli G K, Arfanis M K, Psycharis V, Raptis Y S, Kamitsos E I, Trikalitis P N, Stoumpos C C, Kanatzidis M G, Falaras P 2017 Inorg. Chem. 56 84Google Scholar

    [97]

    Yang W F, Igbari F, Lou Y H, Wang Z K, Liao L S 2020 Adv. Energy Mater. 10 1902584Google Scholar

    [98]

    Xiao M, Gu S, Zhu P C, Tang M Y, Zhu W D, Lin R X, Chen C L, Xu W C, Yu T, Zhu J 2018 Adv. Opt. Mater. 6 1700615Google Scholar

    [99]

    Wong A B, Bekenstein Y, Kang J, Kley C S, Kim D, Gibson N A, Zhang D, Yu Y, Leone S R, Wang L W, Alivisatos A P, Yang P D 2018 Nano Lett. 18 2060Google Scholar

    [100]

    Zhu R, Luo Z, Chen H, Dong Y, Wu S T 2015 Opt. Express 23 23680Google Scholar

    [101]

    Hassan Y, Ashton O J, Park J H, Li G, Sakai N, Wenger B, Haghighirad A A, Noel N K, Song M H, Lee B R, Friend R H, Snaith H J 2019 J. Am. Chem. Soc. 141 1269Google Scholar

    [102]

    Yang J N, Song Y, Yao J S, Wang K H, Wang J J, Zhu B S, Yao M M, Rahman S U, Lan Y F, Fan F J, Yao H B 2020 J. Am. Chem. Soc. 142 2956Google Scholar

    [103]

    Tsai H, Nie W Y, Blancon J C, Stoumpos C C, Soe C M M, Yoo J, Crochet J, Tretiak S, Even J, Sadhanala A, Azzellino G, Brenes R, Ajayan P M, Bulovic V, Stranks S D, Friend R H, Kanatzidis M G, Mohite A D 2018 Adv. Mater. 30 1704217Google Scholar

    [104]

    Wang J, Shen H Z, Li W C, Wang S, Li J Z, Li D H 2019 Adv. Sci. 6 1802019Google Scholar

    [105]

    Lin H, Zhou C K, Tian Y, Siegrist T, Ma B W 2018 ACS Energy Lett. 3 54Google Scholar

    [106]

    Chen S, Shi G 2017 Adv. Mater. 29 1605448Google Scholar

    [107]

    Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122Google Scholar

    [108]

    Song T B, Yokoyama T, Aramaki S, Kanatzidis M G 2017 ACS Energy Lett. 2 897Google Scholar

    [109]

    Li W Z, Li J W, Li J L, Fan J D, Mai Y H, Wang L D 2016 J. Mater. Chem. A 4 17104Google Scholar

    [110]

    Gao C, Jiang Y, Sun C, Han J, He T, Huang Y, Yao K, Han M, Wang X, Wang Y, Gao Y, Liu Y, Yuan M, Liang H 2020 ACS Photonics 7 1915Google Scholar

    [111]

    Hoshi H, Shigeeda N, Dai T 2016 Mater. Lett. 183 391Google Scholar

    [112]

    Ricciarelli D, Meggiolaro D, Ambrosio F, De Angelis F 2020 ACS Energy Lett. 5 2787Google Scholar

    [113]

    Meng X Y, Lin J B, Liu X, He X, Wang Y, Noda T, Wu T H, Yang X D, Han L Y 2019 Advanced Materials 31 1903721

  • 图 1  元素周期表中与铅相邻的元素[30]

    Fig. 1.  Elements adjacent to lead in the periodic table[30].

    图 2  (a) 二维锡基钙钛矿薄膜的制备过程示意图[59]; (b) Cs2SnCl6 纳米晶的形成和Mn2+离子掺杂机制示意图[45]; (c) 控制合成条件制备1D和0D溴化锡钙钛矿示意图[62]

    Fig. 2.  (a) Schematic illustration of the fabrication process for 2D tin-based perovskite thin films by solution method[59]; (b) schematic illustration of the Cs2SnCl6 NC formation and Mn2+ ion doping mechanisms[45]; (c) synthetic schemes for the preparations of 1D and 0D Sn bromide perovskites by carefully controlling synthetic conditions[62].

    图 3  (a) ABX3钙钛矿晶体的晶胞[70]; (b) CsSnX3 (X = Cl, Cl0.5Br0.5, Br, Br0.5I0.5, I)钙钛矿纳米晶的PXRD谱图[60]; (c) 各种钙钛矿的容差因子(t); (d) 各种钙钛矿的八面体因子(μ)[68]

    Fig. 3.  (a) Unit cell of ABX3 perovskite crystal[70]; (b) PXRD spectra of CsSnX3 (X = Cl, Cl0.5Br0.5, Br, Br0.5I0.5, I) perovskite nanocrystals[60]; (c) tolerance factor (t) of various perovskites; (d) octahedral factor (μ) of various perovskites[68].

    图 4  (a) 概述MA(Pb1–xSnx)I3中带隙变化起源的示意图, 阴影区域代表价带和导带[72]; (b) 卤化物钙钛矿太阳能电池的光学吸收原理图[12]; (c) α-CsSnI3, α-CsSnBr3, and α-CsSnCl3的QSGW带结构和部分态密度[75]; (d) BZA2SnI4电子带结构的DFT计算; (e) BZA2SnI4总态密度和部分态密度的DFT计算[76]

    Fig. 4.  (a) Schematic summarizing the origin of the band gap bowing in MA(Pb1–xSnx)I3, shaded regions represent the valence and conduction bands[72]; (b) schematic optical absorption of halide perovskite solar cell absorber[12]; (c) QSGW band structures and partial densities of states of α-CsSnI3, α-CsSnBr3, and α-CsSnCl3[75]; (d) DFT calculations of electronic band structures for BZA2SnI4; (e) DFT calculations of total and partial density of states (PDOS) for BZA2SnI4[76].

    图 5  (a) 纯卤素和混合卤素的CsSnX3薄膜的归一化吸收光谱和稳态荧光光谱[65]; (b) 不同阳离子(CH3NH3+和Pb2+) ABI3的光致发光光谱[78]; (c) (PEA)2SnX4的钙钛矿薄膜的归一化吸收(实线)和荧光(虚线)光谱[41]

    Fig. 5.  (a) Normalized absorption spectra and steady-state PL spectra of CsSnX3 films containing pure and mixed halides[65]; (b) photoluminescence spectra for ABI3 with different cations (CH3NH3+ and Pb2+)[78]; (c) normalized absorbance (solid lines) and PL (dashed lines) spectra of (PEA)2SnX4 perovskite thin films processed on glass[41].

    图 6  (a) CsSnI3电导率随温度变化关系图[79]; (b) 由HI溶液(黑色)生长的和由EtOH溶液(红色)生长的单晶MASnI3的电阻率与温度的关系[80]

    Fig. 6.  (a) Temperature dependence of the electrical conductivity of CsSnI3[79]; (b) temperature dependence of the electrical resistivity of single-crystal MASnI3 grown from the HI solution(black)and that grown from the EtOH solution (red)[80].

    图 7  (a) MASnI3和(b) FASnI3的电阻率在不同RH时随时间的变化关系[82]; 由溶液法获得的 (c) MASnI3和(d) FASnI3的单晶电阻率在5−330 K范围内随温度变化曲线[36]

    Fig. 7.  Resistivity of (a) MASnI3 and (b) FASnI3 as a function of the aging time in air at 60% and 10% RH, respectively[82]; single-crystal temperature-dependent resistivity plots of (c) MASnI3 and (d) FASnI3 in the 5−330 K temperature range. The specimens were obtained from the solution method[36].

    图 8  (a) (RNH2)2SnBr4的光致发光光谱(在316 nm光下激发)[6]; (b) 由有机配体包围的0D Sn混合卤素钙钛矿(C4N2H14Br)4SnBrxI6–x(x = 3)的单晶结构[86]; (c) 室温下(C4N2H14Br)4SnBrxI6–x钙钛矿晶体的激发(蓝线)和发射(红线)光谱[86]; (d) 由积分球收集的(C4N2H14Br)4SnBrxI6–x (x = 3)晶体的参照和发射光谱[86]

    Fig. 8.  (a) Photoluminescence spectra of (RNH2)2SnBr4 (excited by 316 nm)[6]; (b) single-crystal structure of the 0D Sn mixed-halide perovskite (C4N2H14Br)4SnBrxI6–x (x = 3) surrounded by organic ligands[86]; (c) excitation (blue line) and emission (red line) spectra of bulk Sn mixed-halide perovskite crystals at room temperature[86]; (d) excitation line of reference and emission spectrum of (C4N2H14Br)4SnBrxI6–x (x = 3) crystals collected by an integrating sphere[86].

    图 9  (a) Cs2SnI6的晶体结构[22]; (b) A2SnI6的粉末X射线衍射图样和Rietveld细化; (c) Cs2SnI6, (CH3NH3)2SnI6和(CH(NH2)2)2SnI6的分离单元结构[90]

    Fig. 9.  (a) Crystal structure of Cs2SnI6[22]; (b) laboratory powder X-ray diffraction patterns and Rietveld refinements showing phase purity of the A2SnI6 series; (c) structures of Cs2SnI6, (CH3NH3)2SnI6, and (CH(NH2)2)2SnI6 showing the isolated octahedral units[90].

    图 10  (a) 通过GGA功能计算的Cs2SnI6化合物的能带结构和(b) PDOS[81]; 使HSE06+SOC计算的Rb2SnI6的(c) P4/mnc和(d) P21/n相的能带结构[91]

    Fig. 10.  (a) Calculated band structure and (b) PDOS of the Cs2SnI6 compound via the GGA functional[81]; band structures calculated using HSE06+SOC for the (c) P4/mnc and (d) P21/n phases of Rb2SnI6[91].

    图 11  (a) A2SnI6系列每个成员的电阻率作为温度的函数[90]; (b) 使用4探针配置收集的Rb2SnI6(IV)的温度依赖性电阻率数据[91]; (c) A2SnI6空位有序双钙钛矿的实验和计算得出的Hellwarth(μeH)电子迁移率与钙钛矿容差因子的函数关系图[91]

    Fig. 11.  (a) Electrical resistivity as a function of temperature for each member of the A2SnI6 series[90]; (b) temperature-dependent resistivity data of rubidium tin(IV) iodide collected using a 4-probe configuration with Pt wires and Ag paste[91]; (c) experimentally and computationally derived Hellwarth (μeH) electron mobilities of the A2SnI6 vacancy-ordered double perovskites plotted as a function of perovskite tolerance factor[91].

    图 12  (a) 裸露的CsSnI3薄膜在大气环境条件下的照片; (b) 常温条件下封装器件的照片[58]

    Fig. 12.  (a) Photographs of a bare CsSnI3 film in ambient condition; (b) photographs of encapsulated devices put in ambient condition[58].

    图 13  (a) (PEA)2SnX4钙钛矿的总体晶体示意图[41]; (b) (PEA)2SnX4钙钛矿体系的归一化吸光度(实线)和PL(虚线)光谱[41]; (c) 基于PEA2SnI4和TEA2SnI4的PeLED器件的电流密度与电压关系(J-V)曲线和亮度电压(L-V)特性[59]

    Fig. 13.  (a) General crystal schematic of a (PEA)2SnX4 perovskite[41]; (b) normalized absorbance (solid lines) and PL (dashed lines) spectra of (PEA)2SnX4[41]; (c) current density versus voltage (JV) and luminance versus voltage (LV) characteristics for the PeLED devices based on PEA2SnI4 and TEA2SnI4[59].

    图 14  (a) HPA将Sn4+还原为Sn2+的机制; (b) 在不同电压下工作的器件的EL光谱; (c) 没有HPA添加剂的高分辨率Sn 3 d内层电子的XPS能谱; (d) 有HPA添加剂的高分辨率Sn 3 d内层电子的XPS能谱; (e) EQE与电流密度的关系[95]

    Fig. 14.  (a) Mechanism of HPA reduction of Sn4+ to Sn2+; (b) EL spectra of the device operating under different voltages; high-resolution Sn 3 d core level XPS spectra (c) without or (d) with HPA additive; (e) EQE versus current density[95].

    表 1  部分锡基和铅基PeLEDs的总结

    Table 1.  Summaries of Sn-based PeLEDs and Pb-based PeLEDs.

    年份器件结构优化方式电致发光
    峰/nm
    半峰
    宽/nm
    最大亮度/
    辐射率
    EQE/%参考
    文献
    2018ITO/ZnO/PEI/(C18H35NH3)2SnBr4/TCTA/MnO3/Al低维621162350 cd/m20.1[40]
    2019ITO/PVK/(PEA)3.5Cs5Sn4.5I17.5/TmPyPB/LiF/Al低维92040 W/(sr·m2)3.01[42]
    2020ITO/PEDOT:PSS/TEA2SnI4/TPBi/LiF/Al低维63828322 cd/m20.62[59]
    2016ITO/PEDOT:PSS/CsSnI3/PBD/LiF/Al95040 W/(sr·m2)3.8[58]
    2018ITO/LiF/CsSnBr3/LiF/ZnS/Al封装层672172 cd/m20.34[65]
    2020ITO/PEDOT:PSS/(PEA)2SnI4/TPBi/LiF/Al还原剂6332470 cd/m20.3[88]
    2020ITO/PEDOT:PSS/(PEA)2SnI4/TPBi/LiF/Al还原剂632132 cd/m20.72[110]
    2020ITO/PEDOT:PSS/(PEA)2SnI4/TPBi/LiF/Al还原剂630355 cd/m20.52[39]
    2018ITO/PEDOT:PSS/CsPbBr3/PMMA/B3 PYMPM/LiF/Al5252014000 cd/m220.3[2]
    2018ITO/ZnO-PEIE/FAPbI3/TFB/MoOx/Au800390 W/(sr·m2)20.7[3]
    2019ITO/ZnO-PEIE/FAPbI3/TFB/MoOx/Au800308 W/(sr·m2)21.6[5]
    2019ITO/poly-TPD/FA0.33Cs0.67Pb(I0.7Br0.3)3/TPBi/LiF/Al6943720.9[37]
    下载: 导出CSV
  • [1]

    Zhao X, Ng J D A, Friend R H, Tan Z K 2018 ACS Photonics 5 3866Google Scholar

    [2]

    Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [3]

    Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [4]

    Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X 2019 Adv. Mater. 31 1901517Google Scholar

    [5]

    Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418

    [6]

    Hou L, Zhu Y H, Zhu J R, Li C Z 2019 J. Phys. Chem. C 123 31279Google Scholar

    [7]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [8]

    Cho H C, Wolf C, Kim J S, Yun H J, Bae J S, Kim H, Heo J M, Ahn S, Lee T W 2017 Adv. Mater. 29 1700579Google Scholar

    [9]

    Lu M, Zhang Y, Wang S X, Guo J, Yu W W, Rogach A L 2019 Adv. Funct. Mater. 29 1902008Google Scholar

    [10]

    Xiao Z, Yan Y F 2017 Adv. Energy Mater. 7 1701136Google Scholar

    [11]

    Gratzel M 2014 Nat. Mater. 13 838Google Scholar

    [12]

    Yin W J, Yang J H, Kang J, Yan Y F, Wei S H 2015 J. Mater. Chem. A. 3 8926Google Scholar

    [13]

    Zhao Y, Li C L, Jiang J Z, Wang B, Shen L 2020 Small 16 2001534Google Scholar

    [14]

    Li C L, Lu J R, Zhao Y, Sun L Y, Wang G X, Ma Y, Zhang S M, Zhou J R, Shen L, Huang W 2019 Small 15 1903599Google Scholar

    [15]

    Zhao Y, Li C L, Shen L 2019 Info. Mat. 1 164Google Scholar

    [16]

    Li C L, Wang H L, Wang F, Li T F, Xu M J, Wang H, Wang Z, Zhan X W, Hu W D, Shen L 2020 Light Sci. Appl. 9 31Google Scholar

    [17]

    Shen Y, Liu Y C, Ye H C, Zheng Y T, Wei Q, Xia Y D, Chen Y H, Zhao K, Huang W, Liu S F 2020 Angew. Chem. Int. Ed. 59 14896Google Scholar

    [18]

    Pan W, Yang B, Niu G, Xue K H, Du X, Yin L, Zhang M, Wu H, Miao X S, Tang J 2019 Adv. Mater. 31 1904405Google Scholar

    [19]

    Luo T, Zhang Y, Xu Z, Niu T, Wen J, Lu J, Jin S, Liu S F, Zhao K 2019 Adv. Mater. 31 1903848Google Scholar

    [20]

    Sani F, Shafie S, Lim H N, Musa A O 2018 Materials 11 1008Google Scholar

    [21]

    Wu C C, Zhang Q H, Liu G H, Zhang Z H, Wang D, Qu B, Chen Z J, Xiao L X 2020 Adv. Energy Mater. 10 1902496Google Scholar

    [22]

    Luo J J, Hu M C, Niu G D, Tang J 2019 ACS Appl. Mater. Interfaces 11 31575Google Scholar

    [23]

    Igbari F, Wang Z K, Liao L S 2019 Adv. Energy Mater. 9 1803150Google Scholar

    [24]

    Ghosh S, Pradhan B 2019 Chem. Nano. Mat. 5 300Google Scholar

    [25]

    Mao L L, Stoumpos C C, Kanatzidis M G 2019 J. Am. Chem. Soc. 141 1171Google Scholar

    [26]

    Cheng L, Jiang T, Cao Y, Yi C, Wang N N, Huang W, Wang J P 2019 Adv. Mater. 32 1904163Google Scholar

    [27]

    Grancini G, Nazeeruddin M K 2019 Nat. Reviews Mater. 4 4Google Scholar

    [28]

    Babayigit A, Ethirajan A, Muller M, Conings B 2016 Nat. Mater. 15 247Google Scholar

    [29]

    Fan Q Q, Biesold-McGee G V, Ma J Z, Xu Q N, Pan S, Peng J, Lin Z Q 2020 Angew. Chem. Int. Ed. 59 1030Google Scholar

    [30]

    Sun J, Yang J, Lee J I, Cho J H, Kang M S 2018 J. Phys. Chem. Lett. 9 1573Google Scholar

    [31]

    Ke W J, Kanatzidis M G 2019 Nat. Commun. 10 965Google Scholar

    [32]

    Ke W J, Stoumpos C C, Kanatzidis M G 2019 Adv. Mater. 31 1803230Google Scholar

    [33]

    Meng X Y, Lin J B, Liu X, He X, Wang Y, Noda T, Wu T H, Yang X D, Han L Y 2019 Adv. Mater. 31 1903721Google Scholar

    [34]

    Liao Y Q, Liu H F, Zhou W J, Yang D W, Shang Y Q, Shi Z F, Li B H, Jiang X Y, Zhang L J, Quan L N, Quintero-Bermudez R, Sutherland B R, Mi Q X, Sargent E H, Ning Z J 2017 J. Am. Chem. Soc. 139 6693Google Scholar

    [35]

    Hoefler S F, Trimmel G, Rath T 2017 Monatsh Chem. 148 795Google Scholar

    [36]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [37]

    Fang Z B, Chen W J, Shi Y L, Zhao J, Chu S L, Zhang J, Xiao Z G 2020 Adv. Funct. Mater. 30 1909754Google Scholar

    [38]

    Fu P F, Huang M L, Shang Y Q, Yu N, Zhou H L, Zhang Y B, Chen S Y, Gong J K, Ning Z J 2018 ACS Appl. Mater. Interfaces 10 34363Google Scholar

    [39]

    Liao Y, Shang Y Q, Wei Q, Wang H, Ning Z J 2020 J. Phys. D: Appl. Phys. 53 414005Google Scholar

    [40]

    Zhang X T, Wang C C, Zhang Y, Zhang X Y, Wang S X, Lu M, Cui H N, Kershaw S V, Yu W W, Rogach A L 2018 ACS Energy Lett. 4 242Google Scholar

    [41]

    Lanzetta L, Marin-Beloqui J M, Sanchez-Molina I, Ding D, Haque S A 2017 ACS Energy Lett. 2 1662Google Scholar

    [42]

    Wang Y, Zou R M, Chang J, Fu Z W, Cao Y, Zhang L D, Wei Y Q, Kong D C, Zou W, Wen K C, Fan N, Wang N N, Huang W, Wang J P 2019 J. Phys. Chem. Lett. 10 453Google Scholar

    [43]

    El Ajjouri Y, Locardi F, Gélvez-Rueda M C, Prato M, Sessolo M, Ferretti M, Grozema F C, Palazon F, Bolink H J 2019 Energy Technol. 8 1900788Google Scholar

    [44]

    Li J H, Tan Z F, Hu M C, Chen C, Luo J J, Li S R, Gao L, Xiao Z W, Niu G D, Tang J 2019 Front. Optoelectron. 12 352Google Scholar

    [45]

    Lin T W, Su C, Lin C C 2019 J. Inf. Disp. 20 209Google Scholar

    [46]

    Tan Z F, Li J H, Zhang C, Li Z, Hu Q S, Xiao Z W, Kamiya T, Hosono H, Niu G D, Lifshitz E, Cheng Y B, Tang J 2018 Adv. Funct. Mater. 28 1801131Google Scholar

    [47]

    Han P G, Mao X, Yang S Q, Zhang F, Yang B, Wei D H, Deng W Q, Han K 2019 Angew. Chem. Int. Ed. 58 17231Google Scholar

    [48]

    Luo J J, Wang X M, Li S R, Liu J, Guo Y M, Niu G D, Yao L, Fu Y H, Gao L, Dong Q S, Zhao C Y, Leng M Y, Ma F Y, Liang W X, Wang L D, Jin S Y, Han J B, Zhang L J, Etheridge J, Wang J B, Yan Y F, Sargent E H, Tang J 2018 Nature 563 541Google Scholar

    [49]

    Hao F, Stoumpos C C, Guo P J, Zhou N J, Marks T J, Chang R P, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 11445Google Scholar

    [50]

    Liu J W, Ozaki M, Yakumaru S, Handa T, Nishikubo R, Kanemitsu Y, Saeki A, Murata Y, Murdey R, Wakamiya A 2018 Angew. Chem. Int. Ed. 57 13221Google Scholar

    [51]

    Zhu H L, Xiao J Y, Mao J, Zhang H, Zhao Y, Choy W C H 2017 Adv. Funct. Mater. 27 1605469Google Scholar

    [52]

    Moghe D, Wang L L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulović V, Lunt R R 2016 Nano Energy 28 469Google Scholar

    [53]

    Jung M C, Raga S R, Qi Y B 2016 RSC Adv. 6 2819Google Scholar

    [54]

    Funabiki F, Toda Y, Hosono H 2018 J. Phy. Chem. C 122 10749Google Scholar

    [55]

    Xi J, Wu Z X, Jiao B, Dong H, Ran C X, Piao C C, Lei T, Song T B, Ke W J, Yokoyama T, Hou X, Kanatzidis M G 2017 Adv. Mater. 29 1606964Google Scholar

    [56]

    Yokoyama T, Cao D H, Stoumpos C C, Song T B, Sato Y, Aramaki S, Kanatzidis M G 2016 J. Phys. Chem. Lett. 7 776Google Scholar

    [57]

    Lee B, Shin B, Park B 2019 Electron. Mater. Lett. 15 192Google Scholar

    [58]

    Hong W L, Huang Y C, Chang C Y, Zhang Z C, Tsai H R, Chang N Y, Chao Y C 2016 Adv. Mater. 28 8029Google Scholar

    [59]

    Wang Z B, Wang F Z, Zhao B, Qu S N, Hayat T, Alsaedi A, Sui L Z, Yuan K J, Zhang J Q, Wei Z X, Tan Z A 2020 J. Phys. Chem. Lett. 11 1120Google Scholar

    [60]

    Jellicoe T C, Richter J M, Glass H F, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, Bohm M L 2016 J. Am. Chem. Soc. 138 2941Google Scholar

    [61]

    Wang H C, Wang W G, Tang A C, Tsai H Y, Bao Z, Ihara T, Yarita N, Tahara H, Kanemitsu Y, Chen S M, Liu R S 2017 Angew. Chem. Int. Ed. 56 13650Google Scholar

    [62]

    Zhou C K, Tian Y, Wang M C, Rose A, Besara T, Doyle N K, Yuan Z, Wang J C, Clark R, Hu Y Y, Siegrist T, Lin S C, Ma B 2017 Angew. Chem. Int. Ed. 56 9018Google Scholar

    [63]

    Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 J. Am. Chem. Soc. 134 8579Google Scholar

    [64]

    Benin B M, Dirin D N, Morad V, Wörle M, Yakunin S, Rainò G, Nazarenko O, Fischer M, Infante I, Kovalenko M V 2018 Angew. Chem. Int. Ed. 57 11329Google Scholar

    [65]

    Yuan F, Xi J, Dong H, Xi K, Zhang W W, Ran C X, Jiao B, Hou X, Jen A K Y, Wu Z X 2018 Phys. Status Solidi RRL 12 1800090Google Scholar

    [66]

    Zhou J, Luo J J, Rong X M, Wei P J, Molokeev M S, Huang Y, Zhao J, Liu Q L, Zhang X W, Tang J, Xia Z G 2019 Adv. Opt. Mater. 7 1900139Google Scholar

    [67]

    Li C, Lu X G, Ding W Z, Feng L M, Gao Y H, Guo Z M 2008 Acta Cryst. B 64 702Google Scholar

    [68]

    Yin H, Xian Y M, Zhang Y L, Li W Z, Fan J D 2019 Sol. RRL 3 1900148Google Scholar

    [69]

    Scaife D E, Weller P F, Fisher W G 1974 J. Solid State Chem. 9 308Google Scholar

    [70]

    Lai M L, Tay T Y, Sadhanala A, Dutton S E, Li G, Friend R H, Tan Z K 2016 J. Phys. Chem. Lett. 7 2653Google Scholar

    [71]

    Bernal C, Yang K S 2014 J.Phy. Chem. C 118 24383Google Scholar

    [72]

    Goyal A, McKechnie S, Pashov D, Tumas W, van Schilfgaarde M, Stevanović V 2018 Chem. Mater. 30 3920Google Scholar

    [73]

    Liu D, Sa R, Wang J, Wu K C 2019 J. Clust. Sci. 31 1103

    [74]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. Photonics 8 489Google Scholar

    [75]

    Huang L Y, Lambrecht W R L 2013 Phys. Rev. B 88 165203Google Scholar

    [76]

    Pisanu A, Coduri M, Morana M, Ciftci Y O, Rizzo A, Listorti A, Gaboardi M, Bindi L, Queloz V I E, Milanese C, Grancini G, Malavasi L 2020 J. Mater. Chem. A 8 1875Google Scholar

    [77]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [78]

    Peedikakkandy L, Bhargava P 2016 RSC Adv. 6 19857Google Scholar

    [79]

    Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G 2012 JACS 134 8579

    [80]

    Takahashi Y, Obara R, Lin Z Z, Takahashi Y, Naito T, Inabe T, Ishibashi S, Terakura K 2011 Dalton Trans. 40 5563Google Scholar

    [81]

    Lee B, Stoumpos C C, Zhou N, Hao F, Malliakas C, Yeh C Y, Marks T J, Kanatzidis M G, Chang R P 2014 J. Am. Chem. Soc. 136 15379Google Scholar

    [82]

    Wang F, Ma J L, Xie F Y, Li L K, Chen J, Fan J, Zhao N 2016 Adv. Funct. Mater. 26 3417Google Scholar

    [83]

    Qian L, Sun Y L, Wu M M, Li C, Xie D, Ding L M, Shi G Q 2018 Nanoscale 10 6837Google Scholar

    [84]

    Lin J T, Liao C C, Hsu C S, Chen D G, Chen H M, Tsai M K, Chou P T, Chiu C W 2019 J. Am. Chem. Soc. 141 10324Google Scholar

    [85]

    Martinez-Sarti L, Jo S H, Kim Y H, Sessolo M, Palazon F, Lee T W, Bolink H J 2019 Nanoscale 11 12793Google Scholar

    [86]

    Zhou C K, Tian Y, Yuan Z, Lin H, Chen B, Clark R, Dilbeck T, Zhou Y, Hurley J, Neu J, Besara T, Siegrist T, Djurovich P, Ma B 2017 ACS Appl. Mater. Interfaces 9 44579Google Scholar

    [87]

    Zhou C K, Lin H R, Tian Y, Yuan Z, Clark R, Chen B H, van de Burgt L J, Wang J C, Zhou Y, Hanson K, Meisner Q J, Neu J, Besara T, Siegrist T, Lambers E, Djurovich P, Ma B 2018 Chem. Sci. 9 586Google Scholar

    [88]

    Maughan A E, Ganose A M, Bordelon M M, Miller E M, Scanlon D O, Neilson J R 2016 J. Am. Chem. Soc. 138 8453Google Scholar

    [89]

    Zimmermann I, Aghazada S, Nazeeruddin M K 2019 Angew. Chem. Int. Ed. 58 1072Google Scholar

    [90]

    Maughan A E, Ganose A M, Candia A M, Granger J T, Scanlon D O, Neilson J R 2018 Chem. Mater. 30 472Google Scholar

    [91]

    Maughan A E, Ganose A M, Almaker M A, Scanlon D O, Neilson J R 2018 Chem. Mater. 30 3909Google Scholar

    [92]

    Zhang X L, Cao W Y, Wang W G, Xu B, Liu S, Dai H T, Chen S M, Wang K, Sun X W 2016 Nano Energy 30 511Google Scholar

    [93]

    Gonzalez-Carrero S, Espallargas G M, Galian R E, Pérez-Prieto J 2015 J. Mater. Chem. A 3 14039Google Scholar

    [94]

    Wang X M, Meng W W, Liao W Q, Wang J B, Xiong R G, Yan Y F 2019 J. Phys. Chem. Lett. 10 501Google Scholar

    [95]

    Liang H Y, Yuan F L, Johnston A, Gao C C, Choubisa H, Gao Y, Wang Y K, Sagar L K, Sun B, Li P C, Bappi G, Chen B, Li J, Wang Y K, Dong Y T, Ma D X, Gao Y N, Liu Y C, Yuan M J, Saidaminov M I, Hoogland S, Lu Z H, Sargent E H 2020 Adv. Sci. 7 1903213Google Scholar

    [96]

    Kontos A G, Kaltzoglou A, Siranidi E, Palles D, Angeli G K, Arfanis M K, Psycharis V, Raptis Y S, Kamitsos E I, Trikalitis P N, Stoumpos C C, Kanatzidis M G, Falaras P 2017 Inorg. Chem. 56 84Google Scholar

    [97]

    Yang W F, Igbari F, Lou Y H, Wang Z K, Liao L S 2020 Adv. Energy Mater. 10 1902584Google Scholar

    [98]

    Xiao M, Gu S, Zhu P C, Tang M Y, Zhu W D, Lin R X, Chen C L, Xu W C, Yu T, Zhu J 2018 Adv. Opt. Mater. 6 1700615Google Scholar

    [99]

    Wong A B, Bekenstein Y, Kang J, Kley C S, Kim D, Gibson N A, Zhang D, Yu Y, Leone S R, Wang L W, Alivisatos A P, Yang P D 2018 Nano Lett. 18 2060Google Scholar

    [100]

    Zhu R, Luo Z, Chen H, Dong Y, Wu S T 2015 Opt. Express 23 23680Google Scholar

    [101]

    Hassan Y, Ashton O J, Park J H, Li G, Sakai N, Wenger B, Haghighirad A A, Noel N K, Song M H, Lee B R, Friend R H, Snaith H J 2019 J. Am. Chem. Soc. 141 1269Google Scholar

    [102]

    Yang J N, Song Y, Yao J S, Wang K H, Wang J J, Zhu B S, Yao M M, Rahman S U, Lan Y F, Fan F J, Yao H B 2020 J. Am. Chem. Soc. 142 2956Google Scholar

    [103]

    Tsai H, Nie W Y, Blancon J C, Stoumpos C C, Soe C M M, Yoo J, Crochet J, Tretiak S, Even J, Sadhanala A, Azzellino G, Brenes R, Ajayan P M, Bulovic V, Stranks S D, Friend R H, Kanatzidis M G, Mohite A D 2018 Adv. Mater. 30 1704217Google Scholar

    [104]

    Wang J, Shen H Z, Li W C, Wang S, Li J Z, Li D H 2019 Adv. Sci. 6 1802019Google Scholar

    [105]

    Lin H, Zhou C K, Tian Y, Siegrist T, Ma B W 2018 ACS Energy Lett. 3 54Google Scholar

    [106]

    Chen S, Shi G 2017 Adv. Mater. 29 1605448Google Scholar

    [107]

    Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N 2014 Adv. Mater. 26 7122Google Scholar

    [108]

    Song T B, Yokoyama T, Aramaki S, Kanatzidis M G 2017 ACS Energy Lett. 2 897Google Scholar

    [109]

    Li W Z, Li J W, Li J L, Fan J D, Mai Y H, Wang L D 2016 J. Mater. Chem. A 4 17104Google Scholar

    [110]

    Gao C, Jiang Y, Sun C, Han J, He T, Huang Y, Yao K, Han M, Wang X, Wang Y, Gao Y, Liu Y, Yuan M, Liang H 2020 ACS Photonics 7 1915Google Scholar

    [111]

    Hoshi H, Shigeeda N, Dai T 2016 Mater. Lett. 183 391Google Scholar

    [112]

    Ricciarelli D, Meggiolaro D, Ambrosio F, De Angelis F 2020 ACS Energy Lett. 5 2787Google Scholar

    [113]

    Meng X Y, Lin J B, Liu X, He X, Wang Y, Noda T, Wu T H, Yang X D, Han L Y 2019 Advanced Materials 31 1903721

  • [1] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 物理学报, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [2] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [3] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [4] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [5] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛. 有机添加剂在金属卤化钙钛矿发光二极管中的应用. 物理学报, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [6] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [7] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [8] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [9] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究. 物理学报, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [10] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [11] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究. 物理学报, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [12] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究. 物理学报, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [13] 岳庆炀, 孔凡敏, 李康, 赵佳. 基于缺陷光子晶体结构的GaN基发光二极管光提取效率的有关研究. 物理学报, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [14] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [15] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究. 物理学报, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [16] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [17] 李炳乾, 刘玉华, 冯玉春. 大功率GaN基发光二极管等效串联电阻的功率耗散及其对发光效率的影响. 物理学报, 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
    [18] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [19] 张剑铭, 邹德恕, 徐 晨, 顾晓玲, 沈光地. 电极结构优化对大功率GaN基发光二极管性能的影响. 物理学报, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [20] 罗 毅, 郭文平, 邵嘉平, 胡 卉, 韩彦军, 薛 松, 汪 莱, 孙长征, 郝智彪. GaN基蓝光发光二极管的波长稳定性研究. 物理学报, 2004, 53(8): 2720-2723. doi: 10.7498/aps.53.2720
计量
  • 文章访问数:  11008
  • PDF下载量:  388
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-08
  • 修回日期:  2020-10-08
  • 上网日期:  2021-02-06
  • 刊出日期:  2021-02-20

/

返回文章
返回