搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响

封波 邓彪 刘乐功 李增成 冯美鑫 赵汉民 孙钱

引用本文:
Citation:

等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响

封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱

Effect of plasma surface treatment on embedded n-contact for GaN-based blue light-emitting diodes grown on Si substrate

Feng Bo, Deng Biao, Liu Le-Gong, Li Zeng-Cheng, Feng Mei-Xin, Zhao Han-Min, Sun Qian
PDF
导出引用
  • 硅衬底GaN基发光二极管(LED)的内置n型欧姆接触在晶圆键合时的高温过程中常常退化,严重影响LED的工作电压等器件性能.本文深入研究了内置n电极蒸镀前对n-GaN表面的等离子体处理工艺对硅衬底GaN基发光二极管n型欧姆接触特性的影响.实验结果表明,1.1 mm1.1 mm的LED芯片在350 mA电流下,n-GaN表面未做等离子体处理时,n电极为高反射率Cr/Al的芯片正向电压为3.43 V,比n电极为Cr的芯片正向电压高0.28 V.n-GaN表面经O2等离子体表面处理后,Cr/Al和Cr电极芯片的正向电压均有所降低,但Cr/Al电极芯片的正向电压仍比Cr电极芯片高0.14 V.n-GaN表面经Ar等离子体处理后,Cr/Al电极芯片正向电压降至Cr电极芯片的正向电压,均为2.92 V.利用X射线光电子能谱对Ar等离子体处理前后的n-GaN表面进行分析发现,Ar等离子体处理增加了n-GaN表面的N空位(施主)浓度,更多的N空位可以提高n型欧姆接触的热稳定性,缓解晶圆键合的高温过程对n型欧姆接触特性的破坏.同时还发现,经过Ar等离子体处理并用HCl清洗后,n-GaN表面的O原子含量略有增加,但其存在形式由以介电材料GaOx为主转变为导电材料GaOxN1-x和介电材料GaOx含量相当的状态,这会使得接触电阻进一步降低.上述两方面的变化均有利于降低LED芯片的正向电压.
    Unlike the finger-like n-contact that is prepared after the wafer bonding and the N-polar GaN surface roughening for GaN-based vertical structure light-emitting diodes (LEDs) grown on Si substrates, the embedded via-like n-contact is formed prior to the wafer bonding. The high temperature process of the wafer bonding often causes the electrical characteristics of the via-like embedded n-contact to degrade. In this paper, we study in detail the effect of plasma treatment of the n-GaN surface on the forward voltage of GaN-based LED grown on Si substrate. It is shown that with no plasma treatment on the n-GaN surface, the forward voltage (at 350 mA) of the 1.1 mm1.1 mm chip with a highly reflective electrode of Cr (1.1 nm)/Al is 3.43 V, which is 0.28 V higher than that of the chip with a pure Cr-based electrode. The LED forward voltages for both kinds of n-contacts can be reduced by an O2 plasma treatment on the n-GaN surface. But the LED forward voltage with a Cr/Al-based electrode is still 0.14 V higher than that of the chips with a pure Cr-based electrode. However, after an Ar plasma treatment on the n-GaN surface, the LED forward voltage with a Cr/Al-based electrode is reduced to 2.92 V, which is equal to that of the chip with a pure Cr-based electrode. The process window of the n-GaN surface after the Ar plasma treatment is broader. X-ray photoelectron spectroscopy is used to help elucidate the mechanism. It is found that Ar plasma treatment can increase the concentration of N-vacancies (VN) at the n-GaN surface. VN acts as donors, and higher VN helps improve the thermal stability of n-contact because it alleviates the degradation of the n-contact characteristics caused by the high temperature wafer bonding process. It is also found that the O content increases slightly after the Ar plasma treatment and HCl cleaning. The O atoms are mainly present in the dielectric GaOx film before the Ar plasma treatment and the HCl cleaning, and they exist almost equivalently in the conductive GaOxN1-x film and the dielectric GaOx film after Ar treatment and HCl cleaning. The conductive GaOxN1-x film and the VN donors formed during the plasma treatment can reduce the contact resistance and the LED forward voltage.
      通信作者: 孙钱, qsun2011@sinano.ac.cn
    • 基金项目: 国家高技术研究发展计划(批准号:2015AA03A102);国家重点研发计划(批准号:2016YFB0400104);国家自然科学基金(批准号:61534007,61404156,61522407,61604168);中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-JSC014);江苏省自然科学基金(批准号:BK20160401);中国博士后基金(批准号:2016M591944);发光学及应用国家重点实验室开放课题(批准号:SKLA-2016-01);集成光电子学国家重点联合实验室开放课题(批准号:IOSKL2016KF04,IOSKL2016KF07)和中国科学院苏州纳米技术与纳米仿生研究所自有资金(批准号:Y5AAQ51001)资助的课题.
      Corresponding author: Sun Qian, qsun2011@sinano.ac.cn
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No.2015AA03A102),the National Key Research and Development Program of China (Grant No.2016YFB0400104),the National Natural Science Foundation of China (Grant Nos.61534007,61404156,61522407,61604168),the Key Frontier Scientific Research Program of the Chinese Academy of Sciences (Grant No.QYZDB-SSW-JSC014),the Natural Science Foundation of Jiangsu Province,China (Grant No.BK20160401),the China Postdoctoral Science Foundation (Grant No.2016M591944),the Open Fund of the State Key Laboratory of Luminescence and Applications,China (Grant No.SKLA-2016-01),the Open Fund of the State Key Laboratory on Integrated Optoelectronics (Grant Nos.IOSKL2016KF04,IOSKL2016KF07),and the Seed Fund from SINANO,Chinese Academy of Sciences (Grant No.Y5AAQ51001).
    [1]

    Nakamura S, Senoh M, Mukai T 1993 Jpn. J. Appl. Phys 32 L8

    [2]

    Narukawa Y, Ichikawa M, Sanga D, Sano M, Mukai T 2010 J. Phys. D:Appl. Phys. 43 354002

    [3]

    Haerle V, Hahn B, Kaiser S, Weimar A, Bader S, Eberhard F, Plssl A, Eisert D 2004 Phys. Status Solidi(a) 201 2736

    [4]

    Fujii T, Gao Y, Sharma R, Hu E L, Denbaars S P, Nakamura S 2004 Appl. Phys. Lett. 84 855

    [5]

    Chu C F, Cheng C C, Liu W H, Chu J Y, Fan F H, Cheng H C, Doan T, Tran C A 2010 P. IEEE 98 1197

    [6]

    Jeong H H, Sang Y L, Jeong Y K, Choi K K, Song J O, Lee Y H, Seong T Y 2010 Electrochem. Solid-State Lett. 13 H237

    [7]

    Lee S Y, Choi K K, Jeong H H, Kim E J, Son H K, Son S J, Song J O, Seong T Y 2011 Jpn. J. Appl. Phys. 50 2005

    [8]

    Laubsch A, Sabathil M, Baur J, Peter M, Hahn B 2010 IEEE Trans. Electron Dev. 57 79

    [9]

    Hahn B, Galler B, Engl K 2014 Jpn. J. Appl. Phys. 53 100208

    [10]

    Han J, Le D, Jin B, Jeong H, Song J O, Seong T Y 2015 Mat. Sci. Semicon. Pro. 31 153

    [11]

    Greco G, Iucolano F, Roccaforte F 2016 Appl. Surf. Sci. 383 324

    [12]

    Song J O, Kwak J S, ParkY J, Seong T Y 2005 Appl. Phys. Lett. 86 062104

    [13]

    Son J H, Song Y H, Yu H K, Lee J L 2009 Appl. Phys. Lett. 35 062108

    [14]

    Leung B, Han J, Sun Q 2014 Phys. Status Solidi (c) 11 437

    [15]

    Sun Q, Yan W, Feng M X, Li Z C, Feng B, Zhao H M, Yang H 2016 J. Semicond. 32 044006

    [16]

    Sun Y, Zhou K, Sun Q, Liu J P, Feng M X, Li Z C, Zhou Y, Zhang L Q, Li D Y, Zhang S M, Ikeda M, Liu S, Yang H 2016 Nature Photon. 158 1

    [17]

    Luther B P, Mohney S E, Jackson T N, Khan M A, Chen Q, Yang J W 1997 Appl. Phys. Lett. 70 57

    [18]

    Kim H, Park N M, Jang J S, Park S J, Hwang H 2001 Electrochem. Solid-State Lett. 4 G104

    [19]

    Kim H, Ryou J H, Dupuis R D, Lee S N, Park Y, Jeon J W, Seong T Y 2008 Appl. Phys. Lett. 93 192106

    [20]

    Liu J, Feng F, Zhou Y, Zhang J, Jiang F 2011 Appl. Phys. Lett. 99 111112

    [21]

    Kim S J, Nam T Y, Kim T G 2011 IEEE Electr. Device L. 32 149

    [22]

    Jeong T, Kim S W, Lee S H, Ju J W, Lee S J, Baek J H, Lee J K 2011 J. Electrochem. Soc. 158 H908

  • [1]

    Nakamura S, Senoh M, Mukai T 1993 Jpn. J. Appl. Phys 32 L8

    [2]

    Narukawa Y, Ichikawa M, Sanga D, Sano M, Mukai T 2010 J. Phys. D:Appl. Phys. 43 354002

    [3]

    Haerle V, Hahn B, Kaiser S, Weimar A, Bader S, Eberhard F, Plssl A, Eisert D 2004 Phys. Status Solidi(a) 201 2736

    [4]

    Fujii T, Gao Y, Sharma R, Hu E L, Denbaars S P, Nakamura S 2004 Appl. Phys. Lett. 84 855

    [5]

    Chu C F, Cheng C C, Liu W H, Chu J Y, Fan F H, Cheng H C, Doan T, Tran C A 2010 P. IEEE 98 1197

    [6]

    Jeong H H, Sang Y L, Jeong Y K, Choi K K, Song J O, Lee Y H, Seong T Y 2010 Electrochem. Solid-State Lett. 13 H237

    [7]

    Lee S Y, Choi K K, Jeong H H, Kim E J, Son H K, Son S J, Song J O, Seong T Y 2011 Jpn. J. Appl. Phys. 50 2005

    [8]

    Laubsch A, Sabathil M, Baur J, Peter M, Hahn B 2010 IEEE Trans. Electron Dev. 57 79

    [9]

    Hahn B, Galler B, Engl K 2014 Jpn. J. Appl. Phys. 53 100208

    [10]

    Han J, Le D, Jin B, Jeong H, Song J O, Seong T Y 2015 Mat. Sci. Semicon. Pro. 31 153

    [11]

    Greco G, Iucolano F, Roccaforte F 2016 Appl. Surf. Sci. 383 324

    [12]

    Song J O, Kwak J S, ParkY J, Seong T Y 2005 Appl. Phys. Lett. 86 062104

    [13]

    Son J H, Song Y H, Yu H K, Lee J L 2009 Appl. Phys. Lett. 35 062108

    [14]

    Leung B, Han J, Sun Q 2014 Phys. Status Solidi (c) 11 437

    [15]

    Sun Q, Yan W, Feng M X, Li Z C, Feng B, Zhao H M, Yang H 2016 J. Semicond. 32 044006

    [16]

    Sun Y, Zhou K, Sun Q, Liu J P, Feng M X, Li Z C, Zhou Y, Zhang L Q, Li D Y, Zhang S M, Ikeda M, Liu S, Yang H 2016 Nature Photon. 158 1

    [17]

    Luther B P, Mohney S E, Jackson T N, Khan M A, Chen Q, Yang J W 1997 Appl. Phys. Lett. 70 57

    [18]

    Kim H, Park N M, Jang J S, Park S J, Hwang H 2001 Electrochem. Solid-State Lett. 4 G104

    [19]

    Kim H, Ryou J H, Dupuis R D, Lee S N, Park Y, Jeon J W, Seong T Y 2008 Appl. Phys. Lett. 93 192106

    [20]

    Liu J, Feng F, Zhou Y, Zhang J, Jiang F 2011 Appl. Phys. Lett. 99 111112

    [21]

    Kim S J, Nam T Y, Kim T G 2011 IEEE Electr. Device L. 32 149

    [22]

    Jeong T, Kim S W, Lee S H, Ju J W, Lee S J, Baek J H, Lee J K 2011 J. Electrochem. Soc. 158 H908

  • [1] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [2] 王苏杰, 李树强, 吴小明, 陈芳, 江风益. 热退火处理对AuGeNi/n-AlGaInP欧姆接触性能的影响. 物理学报, 2020, 69(4): 048103. doi: 10.7498/aps.69.20191720
    [3] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [4] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [5] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响. 物理学报, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [6] 王光绪, 陈鹏, 刘军林, 吴小明, 莫春兰, 全知觉, 江风益. 刻蚀AlN缓冲层对硅衬底N极性n-GaN表面粗化的影响. 物理学报, 2016, 65(8): 088501. doi: 10.7498/aps.65.088501
    [7] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究. 物理学报, 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [8] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究. 物理学报, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [9] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [10] 刘木林, 闵秋应, 叶志清. 硅衬底InGaN/GaN基蓝光发光二极管droop效应的研究. 物理学报, 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [11] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究. 物理学报, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [12] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究. 物理学报, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [13] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究. 物理学报, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [14] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [15] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [16] 江洋, 罗毅, 汪莱, 李洪涛, 席光义, 赵维, 韩彦军. 柱状与孔状图形衬底对MOVPE生长GaN体材料及LED器件的影响. 物理学报, 2009, 58(5): 3468-3473. doi: 10.7498/aps.58.3468
    [17] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [18] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [19] 张小东, 林德旭, 李公平, 尤 伟, 张利民, 张 宇, 刘正民. 离子注入n型GaN光致发光谱中宽黄光发射带研究. 物理学报, 2006, 55(10): 5487-5493. doi: 10.7498/aps.55.5487
    [20] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
计量
  • 文章访问数:  3601
  • PDF下载量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-13
  • 修回日期:  2016-11-21
  • 刊出日期:  2017-02-05

等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响

  • 1. 南昌大学, 国家硅基LED工程技术研究中心, 南昌 330047;
  • 2. 晶能光电(江西)有限公司, 南昌 330029;
  • 3. 中国科学院苏州纳米技术与纳米仿生研究所, 中科院纳米器件与应用重点实验室, 苏州 215123
  • 通信作者: 孙钱, qsun2011@sinano.ac.cn
    基金项目: 国家高技术研究发展计划(批准号:2015AA03A102);国家重点研发计划(批准号:2016YFB0400104);国家自然科学基金(批准号:61534007,61404156,61522407,61604168);中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-JSC014);江苏省自然科学基金(批准号:BK20160401);中国博士后基金(批准号:2016M591944);发光学及应用国家重点实验室开放课题(批准号:SKLA-2016-01);集成光电子学国家重点联合实验室开放课题(批准号:IOSKL2016KF04,IOSKL2016KF07)和中国科学院苏州纳米技术与纳米仿生研究所自有资金(批准号:Y5AAQ51001)资助的课题.

摘要: 硅衬底GaN基发光二极管(LED)的内置n型欧姆接触在晶圆键合时的高温过程中常常退化,严重影响LED的工作电压等器件性能.本文深入研究了内置n电极蒸镀前对n-GaN表面的等离子体处理工艺对硅衬底GaN基发光二极管n型欧姆接触特性的影响.实验结果表明,1.1 mm1.1 mm的LED芯片在350 mA电流下,n-GaN表面未做等离子体处理时,n电极为高反射率Cr/Al的芯片正向电压为3.43 V,比n电极为Cr的芯片正向电压高0.28 V.n-GaN表面经O2等离子体表面处理后,Cr/Al和Cr电极芯片的正向电压均有所降低,但Cr/Al电极芯片的正向电压仍比Cr电极芯片高0.14 V.n-GaN表面经Ar等离子体处理后,Cr/Al电极芯片正向电压降至Cr电极芯片的正向电压,均为2.92 V.利用X射线光电子能谱对Ar等离子体处理前后的n-GaN表面进行分析发现,Ar等离子体处理增加了n-GaN表面的N空位(施主)浓度,更多的N空位可以提高n型欧姆接触的热稳定性,缓解晶圆键合的高温过程对n型欧姆接触特性的破坏.同时还发现,经过Ar等离子体处理并用HCl清洗后,n-GaN表面的O原子含量略有增加,但其存在形式由以介电材料GaOx为主转变为导电材料GaOxN1-x和介电材料GaOx含量相当的状态,这会使得接触电阻进一步降低.上述两方面的变化均有利于降低LED芯片的正向电压.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回