搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究

张超宇 熊传兵 汤英文 黄斌斌 黄基锋 王光绪 刘军林 江风益

引用本文:
Citation:

图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究

张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益

Changes of micro zone luminescent properties and stress of GaN-based light emitting diode film grown on patterned silicon substrate, induced by the removal of the substrate and AlN buffer layer

Zhang Chao-Yu, Xiong Chuan-Bing, Tang Ying-Wen, Huang Bin-Bin, Huang Ji-Feng, Wang Guang-Xu, Liu Jun-Lin, Jiang Feng-Yi
PDF
导出引用
  • 研究了图形硅衬底上外延生长的氮化镓(GaN)基发光二极管(LED)薄膜、去除硅衬底后的无损自由状态LED薄膜以及去除氮化铝(AlN)缓冲层后的自由状态LED薄膜单个图形内的微区光致发光(PL)性能, 用荧光显微镜与扫描电镜观测了去除AlN缓冲层前后LED薄膜断面弯曲状况的变化. 研究结果表明: 1)去除硅衬底后, 自由支撑的LED薄膜朝衬底方向呈柱面弯曲状态, 且相邻图形的柱面弯曲方向不一致, 当进一步去除AlN缓冲层后薄膜会由弯曲变为平整; 2)LED薄膜在去除硅衬底前后同一图形内不同位置的PL谱具有显著差异, 而当去除AlN缓冲层后不同位置的PL谱会基本趋于一致; LED薄膜每一位置的PL 谱在去除硅衬底后均出现明显红移, 进一步去除AlN缓冲层后PL谱出现程度不一的微小蓝移; 3)自由支撑的LED薄膜去除AlN缓冲层后, PL光强随激光激发密度变化的线性关系增强, 光衰减得到改善.
    At present, there are mainly two kinds of methods to prevent crack and reduce tensile stress of the silicon substrate GaN based light emitting diode (LED) epitaxial films: one is to use the patterned silicon substrate and the other is to grow a thick AlGaN buffer layer. The two kinds of methods have their own advantages and disadvantages. Although the patterned silicon substrate GaN based LED has industrialized and is gradually accepted by the market, there remain many scientific and technical problems, to be resolved, and a lot of research gaps worth studying deeply. Among these problems, to clearly investigate the different micro zone photoluminescence and the stress states in a single-patterned GaN based LED film grown on patterned silicon substrate. The studies of the stress interaction between the buffer layer and the quanturn well layer and the effect on the luminescent properties have important guiding significance for improving the quality and performance of the devices. Different micro zone photoluminescence (PL) properties in single-patterned GaN-based LED films grown on patterned silicon substrates, nondestructive free-standing LED thin film after removing away the silicon substrate, and the free-standing LED films after removing away the AlN buffer layer are studied. The variations of the bending degree of the free-standing LED thin films before and after removing away AlN buffer layer are inverstigated by using fluorescence microscopy and scanning electron microscopy. The results show as follows. 1) After removing away the silicon substrate, the free-standing LED film bends to the substrate direction in a cylindrical bending state. After removing away the AlN buffer layer, the LED film bends into flat. 2) For LED thin films on silicon substrates or off silicon substrates, their PL spectra have significant differences in different micro zones for the same pattern. When the AlN buffer layer is removed from the substrate its PL spectrum tends to be consistent in the different micro zones of the same pattern. When the patterned silicon substrate GaN-based LED thin film is removed from the silicon substrate, the PL spectrum is redshifted in each micro zone. After AlN buffer layer is removed from the substrate, the PL spectra present different degrees of blueshift in each micro zone. 3) The LED films before and after removing away the AlN buffer layer show some differences in droop effect.
      通信作者: 熊传兵, chuanbingxiong@126.com
    • 基金项目: 国家自然科学基金(批准号: 51072076, 11364034, 61334001, 21406076, 61040060)、国家高技术研究发展计划(批准号: 2011AA03A101, 2012AA041002)和国家科技支撑计划(批准号: 2011BAE32B01)资助的课题.
      Corresponding author: Xiong Chuan-Bing, chuanbingxiong@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51072076, 11364034, 61334001, 21406076, 61040060), the National High Technology Research and Development Program of China (Grant Nos. 2011AA03A101, 2012AA041002), and National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2011BAE32B01).
    [1]

    Tan B S, Yuan S, Kang X J 2004 Appl. Phys. Lett. 84 2757

    [2]

    Hibbard D L, Jung S P, Wang C, Ullery D, Zhao Y S, Lee H P, So W, Liu H 2003 Appl. Phys. Lett. 83 311

    [3]

    Kong H S, Ibbetson J, Edmond J 2014 Phys. Status Solidi C 11 621

    [4]

    Okuno K, Oshio T, Shibata N, Honda Y, Yamaguchi M, Amano H 2014 Phys. Status Solidi C 11 722

    [5]

    Liu J L, Feng F F, Zhou Y H, Zhang J L, Jiang F Y 2011 Appl. Phys. Lett. 99 111112

    [6]

    Zhu D D, McAleese C, Häberlen M, Salcianu C, Thrush T, Kappers M, Phillips A, Lane P, Kane M, Wallis D, Martin T, Astles M, Hylton N, Dawson P, Humphreys C 2011 J. Appl. Phys. 109 014502

    [7]

    Tripathy S, Lin V K S, Teo S L, Dadgar A, Diez A, Bläsing J, Krost A 2007 Appl. Phys. Lett. 91 231109

    [8]

    Wang T W, Chen N C, Lien W C, Wu M C, Shih C F 2008 Appl. Phys. Lett. 104 063104

    [9]

    Tanaka S, Kawaguchi Y, Sawaki N, Hibino M, Hiramatsu K 2000 Appl. Phys. Lett. 76 2701

    [10]

    Kim M H, Bang Y C, Park N M, Choi C J, Seong T Y, Park S J 2011 Appl. Phys. Lett. 78 2858

    [11]

    Jain S C, Willander M, Narayan J, Overstraeten R V 2000 J. Appl. Phys. 87 965

    [12]

    Jiang Y, Jia H Q, Wang W X, Wang L, Chen H 2011 Energy Environ. Sci. 4 2625

    [13]

    Jia H Q, Guo L W, Wang W X, Chen H 2009 Adv. Mater. 21 4641

    [14]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F Y 2005 J. Cryst. Growth 285 312

    [15]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176(in Chinese) [熊传兵, 江风益, 方文卿, 王立, 莫春兰 2008 物理学报 57 3176]

    [16]

    Kadir A, Huang C C, Lee K E K, Fitzgerald E A, Chua S J 2014 Appl. Phys. Lett. 105 232113

    [17]

    Shen X Q, Takahashi T, Rong X, Chen G, Wang X Q, Shen B, Matsuhata H, Ide T, Shimizu M 2013 Appl. Phys. Lett. 103 231908

    [18]

    Turnbull D A, Li X, Gu S Q, Reuter E E, Coleman J J, Bishop S G 1996 J. Appl. Phys. 80 4609

    [19]

    Godlewski M, Bergman J P, Monemar B, Rossner U, Barski A 1996 Appl. Phys. Lett. 69 2089

    [20]

    Xiong C B, Jiang F Y, Wang L, Fang W Q, Mo C L 2008 Acta Phys. Sin. 57 7864 (in Chinese) [熊传兵, 江风益, 王立, 方文卿, 莫春兰 2008 物理学报 57 7864]

    [21]

    Chen D Y, Wang L, Xiong C B, Zheng C D, Mo C L, Jiang F Y 2013 Chin. Phys. Lett. 30 098101

    [22]

    Wu X M, Liu J L, Quan Z J, Xiong C B, Zheng C D, Zhang J L, Mao Q H, Jiang F Y 2014 Appl. Phys. Lett. 104 221101

    [23]

    Luo Y, Guo W P, Shao J P, Hu H, Han Y J, Xue S, Wang L, Sun C Z, Hao Z B 2004 Acta Phys. Sin. 53 2720(in Chinese) [罗毅, 郭文平, 邵嘉平, 胡卉, 韩彦军, 薛松, 汪莱, 孙长征, 郝智彪 2004 物理学报 53 2720]

  • [1]

    Tan B S, Yuan S, Kang X J 2004 Appl. Phys. Lett. 84 2757

    [2]

    Hibbard D L, Jung S P, Wang C, Ullery D, Zhao Y S, Lee H P, So W, Liu H 2003 Appl. Phys. Lett. 83 311

    [3]

    Kong H S, Ibbetson J, Edmond J 2014 Phys. Status Solidi C 11 621

    [4]

    Okuno K, Oshio T, Shibata N, Honda Y, Yamaguchi M, Amano H 2014 Phys. Status Solidi C 11 722

    [5]

    Liu J L, Feng F F, Zhou Y H, Zhang J L, Jiang F Y 2011 Appl. Phys. Lett. 99 111112

    [6]

    Zhu D D, McAleese C, Häberlen M, Salcianu C, Thrush T, Kappers M, Phillips A, Lane P, Kane M, Wallis D, Martin T, Astles M, Hylton N, Dawson P, Humphreys C 2011 J. Appl. Phys. 109 014502

    [7]

    Tripathy S, Lin V K S, Teo S L, Dadgar A, Diez A, Bläsing J, Krost A 2007 Appl. Phys. Lett. 91 231109

    [8]

    Wang T W, Chen N C, Lien W C, Wu M C, Shih C F 2008 Appl. Phys. Lett. 104 063104

    [9]

    Tanaka S, Kawaguchi Y, Sawaki N, Hibino M, Hiramatsu K 2000 Appl. Phys. Lett. 76 2701

    [10]

    Kim M H, Bang Y C, Park N M, Choi C J, Seong T Y, Park S J 2011 Appl. Phys. Lett. 78 2858

    [11]

    Jain S C, Willander M, Narayan J, Overstraeten R V 2000 J. Appl. Phys. 87 965

    [12]

    Jiang Y, Jia H Q, Wang W X, Wang L, Chen H 2011 Energy Environ. Sci. 4 2625

    [13]

    Jia H Q, Guo L W, Wang W X, Chen H 2009 Adv. Mater. 21 4641

    [14]

    Mo C L, Fang W Q, Pu Y, Liu H C, Jiang F Y 2005 J. Cryst. Growth 285 312

    [15]

    Xiong C B, Jiang F Y, Fang W Q, Wang L, Mo C L 2008 Acta Phys. Sin. 57 3176(in Chinese) [熊传兵, 江风益, 方文卿, 王立, 莫春兰 2008 物理学报 57 3176]

    [16]

    Kadir A, Huang C C, Lee K E K, Fitzgerald E A, Chua S J 2014 Appl. Phys. Lett. 105 232113

    [17]

    Shen X Q, Takahashi T, Rong X, Chen G, Wang X Q, Shen B, Matsuhata H, Ide T, Shimizu M 2013 Appl. Phys. Lett. 103 231908

    [18]

    Turnbull D A, Li X, Gu S Q, Reuter E E, Coleman J J, Bishop S G 1996 J. Appl. Phys. 80 4609

    [19]

    Godlewski M, Bergman J P, Monemar B, Rossner U, Barski A 1996 Appl. Phys. Lett. 69 2089

    [20]

    Xiong C B, Jiang F Y, Wang L, Fang W Q, Mo C L 2008 Acta Phys. Sin. 57 7864 (in Chinese) [熊传兵, 江风益, 王立, 方文卿, 莫春兰 2008 物理学报 57 7864]

    [21]

    Chen D Y, Wang L, Xiong C B, Zheng C D, Mo C L, Jiang F Y 2013 Chin. Phys. Lett. 30 098101

    [22]

    Wu X M, Liu J L, Quan Z J, Xiong C B, Zheng C D, Zhang J L, Mao Q H, Jiang F Y 2014 Appl. Phys. Lett. 104 221101

    [23]

    Luo Y, Guo W P, Shao J P, Hu H, Han Y J, Xue S, Wang L, Sun C Z, Hao Z B 2004 Acta Phys. Sin. 53 2720(in Chinese) [罗毅, 郭文平, 邵嘉平, 胡卉, 韩彦军, 薛松, 汪莱, 孙长征, 郝智彪 2004 物理学报 53 2720]

  • [1] 赵建铖, 吴朝兴, 郭太良. 无注入型发光二极管的载流子输运模型研究. 物理学报, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [2] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [3] 王党会, 许天旱. 蓝紫光发光二极管中的低频产生-复合噪声行为研究. 物理学报, 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [4] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [5] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响. 物理学报, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [6] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [7] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征. 物理学报, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [8] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究. 物理学报, 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [9] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [10] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [11] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究. 物理学报, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [12] 唐红霞, 吕树臣. 发光二极管用红色荧光粉SrMoO4:Eu3+的制备和发射性质. 物理学报, 2011, 60(3): 037805. doi: 10.7498/aps.60.037805
    [13] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究. 物理学报, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [14] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [15] 朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林. In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能. 物理学报, 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [16] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [17] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [18] 张剑铭, 邹德恕, 徐 晨, 顾晓玲, 沈光地. 电极结构优化对大功率GaN基发光二极管性能的影响. 物理学报, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [19] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征. 物理学报, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [20] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
计量
  • 文章访问数:  6334
  • PDF下载量:  257
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-10
  • 修回日期:  2015-05-18
  • 刊出日期:  2015-09-05

/

返回文章
返回