搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用

吴家龙 窦永江 张建凤 王浩然 杨绪勇

引用本文:
Citation:

溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用

吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇

Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer

Wu Jia-Long, Dou Yong-Jiang, Zhang Jian-Feng, Wang Hao-Ran, Yang Xu-Yong
PDF
HTML
导出引用
  • 甲脒基钙钛矿(FAPbX3)纳米晶(NCs)具有成本低、色纯度高、吸收范围广、带隙可调等特点, 在照明显示与光伏领域中表现出良好的应用前景. 然而传统钙钛矿发光二极管(LEDs)的空穴注入层材料—PEDOT:PSS, 由于其固有的吸湿性和酸性, 严重影响着器件的稳定性, 而器件的稳定性始终是阻碍钙钛矿发光器件成为实际应用的关键因素之一. 本文首次使用溶液法制备的氧化镍(NiO)薄膜作为溴基甲脒钙钛矿(FAPbBr3) NCs LEDs的空穴注入层, 降低空穴注入层对钙钛矿发光层的影响, 获得了高效且稳定的钙钛矿发光器件, 器件寿命是基于PEDOT:PSS的器件的2.3倍. 通过适当浓度的金属掺杂(Cs:NiO/Li:NiO)可以有效改善器件的电荷平衡, 从而进一步提高FAPbBr3 NCs LEDs 的性能. 基于掺杂2 mol% Cs的NiO的器件表现出最优异的光电性质, 其最大亮度, 最大电流效率, 峰值EQE分别为2970 cd·m–2, 43.0 cd·A–1和11.0%; 相比于传统的PEDOT:PSS基的器件, 效率提高了近2倍.
    Formamidinium lead bromide (FAPbBr3) perovskite nanocrystals (NCs) have attracted great attention due to their remarkable performances of low cost, high color purity and tunable band gap. However, in a typical FAPbBr3 perovskite light-emitting diode(LED), PEDOT:PSS, with hygroscopic and acidic nature, serves as a hole injection layer (HIL), thus leading to the device stability to decrease seriously. Device stability is one critical issue that needs improving for future applications. Here in this study, the nickel oxide (NiO) film prepared by the solution method is adopted as the HIL of the FAPbBr3 perovskite LED to substitute detrimental PEDOT:PSS. Compared with the control device with PEDOT:PSS HIL, the resulting LED based on NiO film has the operating lifetime twice as great as that based on the PEDOT:PSS film. For further enhancing the performance of FAPbBr3 LED, two metal dopants (Cs and Li) are introduced to improve the hole injection capability of NiO film and the charge carriers’ balance of device. With Hall measurements, both NiO and Cs/Li-doped NiO demonstrate a full p-type semiconductor characteristic. Increasing the doping concentration in the film can increase the carrier concentration and reduce the carrier mobility. This decreased carrier mobility results from the increased scattering due to grain boundaries and impurity phases, seriously at high Cs/Li concentration. As a result, the device, based on the NiO film (doping 2 mol% Cs) shows the best performance with a maximum brightness value of 2970 cd/m2, current efficiency of 43 cd/A and external quantum efficiency (EQE) of 11.0%, thus its efficiency is increased nearly by twice compared with that of the PEDOT:PSS-based device. The results pave the way for making highly efficient and stability perovskite LEDs based on FAPbBr3 NCs.
      通信作者: 杨绪勇, yangxy@shu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFB0401702)、国家自然科学基金(批准号: 51675322, 61605109, 61735004)、上海启明星计划(批准号: 17QA1401600)和上海高校特聘教授(东方学者)计划资助的课题
      Corresponding author: Yang Xu-Yong, yangxy@shu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0401702), the National Natural Science Foundation of China (Grant Nos. 51675322, 61605109, 61735004), the Shanghai Rising-Star Program, China (Grant No. 17QA1401600), and the Program for Professors of Special Appointment (Eastern Scholar) of the Higher Education Institutions of Shanghai, China.
    [1]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [4]

    Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photonics 11 108Google Scholar

    [5]

    Kim Y H, Cho H, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [6]

    Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W 2016 Adv. Mater. 28 7515Google Scholar

    [7]

    Fu Y, Zhu H, Schrader A W, Liang D, Ding Q, Joshi P, Hwang L, Zhu X Y, Jin S 2016 Nano Lett. 16 1000Google Scholar

    [8]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar

    [9]

    Protesescu L, Yakunin S, Bodnarchuk M I, Bertolotti F, Masciocchi N, Guagliardi A, Kovalenko M V 2016 J. Am. Chem. Soc. 138 14202Google Scholar

    [10]

    Song J, Hu W, Wang X F, Chen G, Tian W, Miyasaka T J 2016 Mater. Chem. A 4 8435Google Scholar

    [11]

    Smecca E, Numata Y, Deretzis I, Pellegrino G, Boninelli S, Miyasaka T, LaMagna A, Alberti A 2016 Phys. Chem. Chem. Phys. 18 13413Google Scholar

    [12]

    Perumal A, Shendre S, Li M, Tay Y K E, Sharma V K, Chen S, Wei Z, Liu Q, Gao Y, Buenconsejo P J S, Tan S T, Gan C L, Xiong Q, Sum T C, Demir H V 2016 Sci. Rep. 6 36733Google Scholar

    [13]

    Kim Y H, Lee G H, Kim Y T, Wolf C, Yun H J, Kwon W, Park C G, Lee T W 2017 Nano Energy 38 51Google Scholar

    [14]

    Cui J, Meng F P, Zhang H, Cao K, Yuan H, Cheng Y, Huang F, Wang M K 2014 ACS Appl. Mater. Interfaces 6 22862Google Scholar

    [15]

    Cao F, Wang H, Shen P, Li X, Zheng Y, Shang Y Q, Zhang J H, Ning Z, Yang X 2017 Adv. Funct. Mater. 27 1704278Google Scholar

    [16]

    Chih Y, Wang J, Yang R, Liu C, Chang Y, Fu Y, Lai W, Chen P, Wen T, Huang Y, Tsao C, Guo T 2016 Adv. Mater. 28 8687Google Scholar

    [17]

    Wang Z, Luo Z, Zhao C, Guo Q, Wang Y, Wang F, Bian X, Alsaedi A, Hayat T, Tan Z 2017 J. Phys. Chem. C 121 28132Google Scholar

    [18]

    Lee S, Kim D B, Hamilton L, Daboczi M, Nam Y S, Lee B R, Zhao B, Jang C H, Friend R, Kim J, Song M H 2018 Adv. Sci. 5 1801350Google Scholar

    [19]

    Wang H, Zhang X, Wu Q, Cao F, Yang D, Shang Y, Ning Z, Zhang W, Zheng W, Yan Y, Kershaw S V, Zhang L, Rogach A L, Yang X 2019 Nat. Commun. 10 665Google Scholar

    [20]

    Wang H, Li X, Yuan M, Yang X 2018 Small 14 1703410Google Scholar

    [21]

    Levchun L, OsvetA, Tang X F 2017 Nano Lett. 17 2765

    [22]

    Empedocles S A, Bawendi M G 1997 Science 278 2114Google Scholar

    [23]

    Mashford B S, Stevenson M, Popvic Z, Hamilton C, Zhou Z, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S, Kazlas P T 2013 Nat. Photonics 7 407Google Scholar

    [24]

    Park S Y, Kim H R, Kang Y J, Kim D H, Kang J W 2010 Sol. Energy Mater. Sol. Cells 94 2332Google Scholar

    [25]

    Yang Y X, Zheng Y, Cao W R, Titov A, Hyvonen J, Manders J R, Xue J G, Holloway P H, Qian L 2015 Nat. Photonics 9 259Google Scholar

    [26]

    Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X 2014 Nature 515 96Google Scholar

    [27]

    Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R B M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920Google Scholar

    [28]

    Fu F, Feurer T, Weiss T P, Pisoni S, Avancini E, Andres C, Buecheler S, Tiwari A N 2016 Nat. Energy 2 16190

    [29]

    Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C, Du G 2017 Nano Lett. 17 313Google Scholar

    [30]

    Shi Z, Li S, Li Y, Ji H, Li X, Wu D, Xu T, Chen Y, Tian Y, Zhang Y, Shan C, Du G 2018 ACS Nano 12 1462Google Scholar

    [31]

    Alidoust N, Carter E A 2015 Phys. Chem. Chem. Phys. 17 18098Google Scholar

    [32]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695Google Scholar

    [33]

    Zhang J, Cai G, Zhou D, Tang H, Wang X, Gu C, Tu J 2014 J. Mater. Chem. C 2 7013Google Scholar

    [34]

    Popescu I, Skoufa Z, Heracleous E, Lemonidou A, Marcu I C 2015 Phys. Chem. Chem. Phys. 17 8138Google Scholar

    [35]

    Muthukumaran P, Raju C V, Sumathi C, Ravi G, Solairaj D, Rameshthangam P, Wilson J, Rajendrane S, Alwarappan S 2016 New J. Chem. 40 2741Google Scholar

    [36]

    Chen S C, Kuo T Y, Lin Y C, Lin H C 2011 Thin Solid Films 519 4944Google Scholar

    [37]

    Hwang J D, Ho T H 2017 Mater. Sci. Semicond. Process. 71 396Google Scholar

    [38]

    Chen W, Wu Y, Fan J, Djurišic A B, Liu F, Tam H W, Ng A, Surya C, Chan W K, Wang D, He Z B 2018 Adv. Energy Mater. 8 1703519Google Scholar

  • 图 1  (a) 器件结构示意图; (b) 器件横断面SEM截面图; (c) 能级结构示意图; (d) FAPbBr3 NCs的XRD图谱(插图为其TEM图)

    Fig. 1.  (a) Device structure; (b) cross-sectional SEM image of the device; (c) energy band diagram; (d) XRD diffraction pattern of the FAPbBr3 NCs (inset: TEM image of the FAPbBr3 NCs).

    图 2  (a) 器件的归一化电致发光和光致发光光谱; PEDOT:PSS和NiO空穴注入层器件的(b) 电流密度-电压曲线, (c) 亮度-电压曲线和(d)电流密度-外量子效率-电压特性

    Fig. 2.  (a) Normalized electroluminescence and photoluminescence spectra of the device; (b) J-V characteristics, (c) L-V characteristics, and (d) CE-EQE-V characteristics of the PEDOT:PSS- and NiO-based device.

    图 3  PEDOT:PSS和NiO空穴注入层的器件寿命特性图

    Fig. 3.  Operating lifetime characteristics of the PEDOT:PSS and NiO-based devices.

    图 4  掺杂不同浓度(2, 4, 6 mol%)Cs的NiO器件的(a) 电流密度-亮度-电压特性和(b)电流效率-外量子效率-电压特性; 掺杂不同浓度(2, 4, 6 mol%)Li的NiO器件的(c) 电流密度-亮度-电压特性和(d)电流效率-外量子效率-电压特性

    Fig. 4.  (a) J-L-V characteristics of the devices with Cs: NiO; (b) CE-EQE-V characteristics of the devices with Cs: NiO; (c) J-L-V characteristics of the devices with Li: NiO; (d) CE-EQE-V characteristics of the devices with Li: NiO at different concentrations (2, 4 and 6 mol%).

    表 1  金属掺杂NiO的器件性能

    Table 1.  The performance of devices with metal-doped NiO.

    金属掺
    杂浓度
    Von/V a Lmax/
    cd·m–2 b
    CE/
    cd·A–1 c
    EQE/% d
    2 mol% Cs 3 2970 43.0 11.0
    4 mol% Cs 3 2610 27.8 7.1
    6 mol% Cs 3 2090 8.7 2.2
    2 mol% Li 3 2500 32.3 8.3
    4 mol% Li 3 3490 41.8 10.7
    6 mol% Li 3 2950 16.0 4.1
    a开启电压, 亮度为1 cd·m–2 时的电压; b最高的亮度; c最高的电流效率; d最高的外量子效率.
    下载: 导出CSV

    表 2  Cs掺杂NiO薄膜的电学性能

    Table 2.  Electrical properties of Cs-doped NiO films.

    金属掺杂浓度 ρ/Ω·cm a μ/cm2·V–1·s–1 b p/cm–3 c
    0 2.6 × 10–1 1.7 2.1 × 1018
    2 mol% Cs 1.8 × 10–1 1.5 5.3 × 1018
    4 mol% Cs 1.7 × 10–1 0.5 6.0 × 1018
    6 mol% Cs 1.4 × 10–1 0.2 7.4 × 1018
    2 mol% Li 2.2 × 10–1 1.3 4.6 × 1018
    4 mol% Li 1.8 × 10–1 1.1 5.7 × 1018
    6 mol% Li 1.5 × 10–1 0.3 6.9 × 1018
    a电阻率; b迁移率; c载流子浓度(空穴).
    下载: 导出CSV
  • [1]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [4]

    Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photonics 11 108Google Scholar

    [5]

    Kim Y H, Cho H, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [6]

    Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W 2016 Adv. Mater. 28 7515Google Scholar

    [7]

    Fu Y, Zhu H, Schrader A W, Liang D, Ding Q, Joshi P, Hwang L, Zhu X Y, Jin S 2016 Nano Lett. 16 1000Google Scholar

    [8]

    Manser J S, Christians J A, Kamat P V 2016 Chem. Rev. 116 12956Google Scholar

    [9]

    Protesescu L, Yakunin S, Bodnarchuk M I, Bertolotti F, Masciocchi N, Guagliardi A, Kovalenko M V 2016 J. Am. Chem. Soc. 138 14202Google Scholar

    [10]

    Song J, Hu W, Wang X F, Chen G, Tian W, Miyasaka T J 2016 Mater. Chem. A 4 8435Google Scholar

    [11]

    Smecca E, Numata Y, Deretzis I, Pellegrino G, Boninelli S, Miyasaka T, LaMagna A, Alberti A 2016 Phys. Chem. Chem. Phys. 18 13413Google Scholar

    [12]

    Perumal A, Shendre S, Li M, Tay Y K E, Sharma V K, Chen S, Wei Z, Liu Q, Gao Y, Buenconsejo P J S, Tan S T, Gan C L, Xiong Q, Sum T C, Demir H V 2016 Sci. Rep. 6 36733Google Scholar

    [13]

    Kim Y H, Lee G H, Kim Y T, Wolf C, Yun H J, Kwon W, Park C G, Lee T W 2017 Nano Energy 38 51Google Scholar

    [14]

    Cui J, Meng F P, Zhang H, Cao K, Yuan H, Cheng Y, Huang F, Wang M K 2014 ACS Appl. Mater. Interfaces 6 22862Google Scholar

    [15]

    Cao F, Wang H, Shen P, Li X, Zheng Y, Shang Y Q, Zhang J H, Ning Z, Yang X 2017 Adv. Funct. Mater. 27 1704278Google Scholar

    [16]

    Chih Y, Wang J, Yang R, Liu C, Chang Y, Fu Y, Lai W, Chen P, Wen T, Huang Y, Tsao C, Guo T 2016 Adv. Mater. 28 8687Google Scholar

    [17]

    Wang Z, Luo Z, Zhao C, Guo Q, Wang Y, Wang F, Bian X, Alsaedi A, Hayat T, Tan Z 2017 J. Phys. Chem. C 121 28132Google Scholar

    [18]

    Lee S, Kim D B, Hamilton L, Daboczi M, Nam Y S, Lee B R, Zhao B, Jang C H, Friend R, Kim J, Song M H 2018 Adv. Sci. 5 1801350Google Scholar

    [19]

    Wang H, Zhang X, Wu Q, Cao F, Yang D, Shang Y, Ning Z, Zhang W, Zheng W, Yan Y, Kershaw S V, Zhang L, Rogach A L, Yang X 2019 Nat. Commun. 10 665Google Scholar

    [20]

    Wang H, Li X, Yuan M, Yang X 2018 Small 14 1703410Google Scholar

    [21]

    Levchun L, OsvetA, Tang X F 2017 Nano Lett. 17 2765

    [22]

    Empedocles S A, Bawendi M G 1997 Science 278 2114Google Scholar

    [23]

    Mashford B S, Stevenson M, Popvic Z, Hamilton C, Zhou Z, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S, Kazlas P T 2013 Nat. Photonics 7 407Google Scholar

    [24]

    Park S Y, Kim H R, Kang Y J, Kim D H, Kang J W 2010 Sol. Energy Mater. Sol. Cells 94 2332Google Scholar

    [25]

    Yang Y X, Zheng Y, Cao W R, Titov A, Hyvonen J, Manders J R, Xue J G, Holloway P H, Qian L 2015 Nat. Photonics 9 259Google Scholar

    [26]

    Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X 2014 Nature 515 96Google Scholar

    [27]

    Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R B M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920Google Scholar

    [28]

    Fu F, Feurer T, Weiss T P, Pisoni S, Avancini E, Andres C, Buecheler S, Tiwari A N 2016 Nat. Energy 2 16190

    [29]

    Shi Z, Li Y, Zhang Y, Chen Y, Li X, Wu D, Xu T, Shan C, Du G 2017 Nano Lett. 17 313Google Scholar

    [30]

    Shi Z, Li S, Li Y, Ji H, Li X, Wu D, Xu T, Chen Y, Tian Y, Zhang Y, Shan C, Du G 2018 ACS Nano 12 1462Google Scholar

    [31]

    Alidoust N, Carter E A 2015 Phys. Chem. Chem. Phys. 17 18098Google Scholar

    [32]

    Kim J H, Liang P W, Williams S T, Cho N, Chueh C C, Glaz M S, Ginger D S, Jen A K Y 2015 Adv. Mater. 27 695Google Scholar

    [33]

    Zhang J, Cai G, Zhou D, Tang H, Wang X, Gu C, Tu J 2014 J. Mater. Chem. C 2 7013Google Scholar

    [34]

    Popescu I, Skoufa Z, Heracleous E, Lemonidou A, Marcu I C 2015 Phys. Chem. Chem. Phys. 17 8138Google Scholar

    [35]

    Muthukumaran P, Raju C V, Sumathi C, Ravi G, Solairaj D, Rameshthangam P, Wilson J, Rajendrane S, Alwarappan S 2016 New J. Chem. 40 2741Google Scholar

    [36]

    Chen S C, Kuo T Y, Lin Y C, Lin H C 2011 Thin Solid Films 519 4944Google Scholar

    [37]

    Hwang J D, Ho T H 2017 Mater. Sci. Semicond. Process. 71 396Google Scholar

    [38]

    Chen W, Wu Y, Fan J, Djurišic A B, Liu F, Tam H W, Ng A, Surya C, Chan W K, Wang D, He Z B 2018 Adv. Energy Mater. 8 1703519Google Scholar

  • [1] 余毅, 安治东, 蔡晓艺, 郭明磊, 敬承斌, 李艳青. 锡基钙钛矿的研究进展及其在发光二极管中的应用. 物理学报, 2021, 70(4): 048503. doi: 10.7498/aps.70.20201284
    [2] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 物理学报, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [3] 宋梦婷, 张悦, 黄文娟, 候华毅, 陈相柏. 拉曼光谱研究退火氧化镍中二阶磁振子散射增强. 物理学报, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [4] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [5] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [6] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [7] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [8] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [9] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛. 有机添加剂在金属卤化钙钛矿发光二极管中的应用. 物理学报, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [10] 陈湛旭, 万巍, 何影记, 陈耿炎, 陈泳竹. 利用单层密排的纳米球提高发光二极管的出光效率. 物理学报, 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [11] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [12] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [13] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究. 物理学报, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [14] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究. 物理学报, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [15] 薛正群, 黄生荣, 张保平, 陈朝. 激光诱导p-GaN掺杂对发光二极管性能改善的分析. 物理学报, 2010, 59(2): 1268-1274. doi: 10.7498/aps.59.1268
    [16] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [17] 李炳乾, 刘玉华, 冯玉春. 大功率GaN基发光二极管等效串联电阻的功率耗散及其对发光效率的影响. 物理学报, 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
    [18] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [19] 张剑铭, 邹德恕, 徐 晨, 顾晓玲, 沈光地. 电极结构优化对大功率GaN基发光二极管性能的影响. 物理学报, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [20] 罗 毅, 郭文平, 邵嘉平, 胡 卉, 韩彦军, 薛 松, 汪 莱, 孙长征, 郝智彪. GaN基蓝光发光二极管的波长稳定性研究. 物理学报, 2004, 53(8): 2720-2723. doi: 10.7498/aps.53.2720
计量
  • 文章访问数:  12094
  • PDF下载量:  266
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-21
  • 修回日期:  2019-10-25
  • 上网日期:  2019-12-12
  • 刊出日期:  2020-01-05

/

返回文章
返回