搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝色荧光有机发光二极管中的激子-电荷相互作用

管胜婕 周林箭 沈成梅 张勇

引用本文:
Citation:

蓝色荧光有机发光二极管中的激子-电荷相互作用

管胜婕, 周林箭, 沈成梅, 张勇

Exciton-polaron interaction in blue fluorescent organic light-emitting diodes

Guan Sheng-Jie, Zhou Lin-Jian, Shen Cheng-Mei, Zhang Yong
PDF
HTML
导出引用
  • 有机发光二极管(OLED)作为新一代显示技术已广泛商用, 但蓝光有机发光二极管在效率和稳定性等方面仍存在不足, 虽用磷光染料能明显地提高效率, 其制作成本之高却限制了产业化发展. 因此, 本文对蓝色荧光有机发光二极管中的效率滚降现象进行了深入探究. 首先, 从稳态和瞬态两个角度研究了电子电流和空穴电流对单极器件光致发光行为的影响, 表明空穴对激子的淬灭效果更显著. 实验证明激子-电荷相互作用是荧光OLED中效率滚降的主要机制, 且激子主要是被束缚电荷淬灭而非移动电荷. 另一方面制备了不同掺杂浓度的有机发光二极管器件以探究掺杂浓度对激子-极化子相互作用的影响, 得到了综合性能较好的蓝色有机荧光器件, 分析表明调控发光层电荷俘获可以平衡界面堆积电荷和发光层束缚电荷对激子的淬灭. 本文完善了激子-极化子淬灭的内在机制,给减缓蓝色荧光有机发光二极管的效率滚降提供了有益参考.
    OLEDs are popular as display technology nowadays, which have been widely used in commercial application. However, there are still some problems that blue light devices are not as efficient or stable as red and green light devices. Although the use of phosphorescent dyes can significantly improve the internal quantum efficiency, the high production cost and unstable performance limit the industrialization of phosphorescent OLEDs. In the development of OLEDs, the researchers found that OLEDs suffered from a decline in their efficiency at high brightness levels, a behavior known as “efficiency roll-off”. The efficiency roll-off is more pronounced in phosphorescent devices due to the longer lifetime of triplet exciton than singlet exciton, so that it has been widely investigated in recent years. Little is known, still, about fluorescent devices. Accordingly, unraveling the exciton loss mechanism in blue fluorescent OLEDs is particularly important, as it is a limiting factor for the improvement of efficiency. In this work, the efficiency roll-off in blue fluorescent OLEDs is investigated by observing the quenching of DPAVBI excitons. Firstly, the effects of electron current and hole current on photoluminescence(PL) behavior of unipolar devices are studied by steady-state and transient-state measurements, and we analyze PL spectrum and calculate the exciton quenching rate constant according to the transient PL decay curves to clarify the exciton quenching dynamics. The results show that the holes are much more efficient in quenching the excitons when the host is a hole transport material. This is different from the general understanding that exciton-polaron quenching effect with higher carrier mobility is weaker. Because the existence of bound charges produces additional charge density, and it is inferred that the exciton is mainly quenched by trapped charge rather than moving charge. We also exclude the effect of exciton–exciton annihilation and electric-field-induced dissociation on the efficiency degradation of the OLEDs. It is confirmed experimentally that exciton-polaron interaction is the dominant mechanism of the efficiency roll-off in fluorescent OLEDs. We then fabricate organic light-emitting diode devices with different doping concentrations to figure out the effect of doping concentration on exciton-polaron interaction, and obtain a blue fluorescence device with good comprehensive performance. We also summarize some feasible methods to optimize the efficiency of the OLEDs. In this paper, our findings about exciton-polaron interaction might provide a viable source for efficiency improvement by regulating charge trapping in light emitting layer.
      通信作者: 张勇, yzh6127@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61475126)资助的课题
      Corresponding author: Zhang Yong, yzh6127@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61475126)
    [1]

    汪津, 赵毅, 谢文法, 段羽, 陈平, 刘式墉 2011 物理学报 60 579Google Scholar

    Wang J, Zhao Y, Xie W F, Duan Y, Chen P, Liu S Y 2011 Acta Phys. Sin. 60 579Google Scholar

    [2]

    Song W, Lee J Y 2017 Org. Electron. 51 1Google Scholar

    [3]

    崔荣朕, 唐艳茹, 马玉芹, 杨秀云, 耿丽华, 李云辉 2015 应用化学 32 855Google Scholar

    Cui R L, Tang Y R, Ma Y Q, Yang X Y, Gen L H, Li Y H 2015 Chin. J. Appl. Chem. 32 855Google Scholar

    [4]

    Xu Z, Tang B Z, Wang Y, Ma D G 2020 J. Mater. Chem. C 8 2614Google Scholar

    [5]

    Song D D, Zhao S L, Luo Y C, Aziz H 2010 Appl. Phys. Lett. 97 3Google Scholar

    [6]

    Luo Y C, Aziz H, Xu G, Popovic Z D 2007 Chem. Mater. 19 2288Google Scholar

    [7]

    Guo K, Li W, Zhang J, Zhang X, Wang X, Chen G, Xu T, Yang L, Zhu W, Wei B 2016 RSC Adv. 6 55626Google Scholar

    [8]

    Wang Q, Oswald I W H, Perez M R, Jia H, Gnade B E, Omary M A 2013 Adv. Funct. Mater. 23 5420Google Scholar

    [9]

    Reineke S, Walzer K, Leo K 2007 Phys. Rev. B 75 13Google Scholar

    [10]

    Baldo M A, Adachi C, Forrest S R 2000 Phys. Rev. B 62 10967Google Scholar

    [11]

    Giebink N C, Forrest S R 2008 Phys. Rev. B 77 9Google Scholar

    [12]

    Fukuda T, Okada T, Wei B, Ichikawa M, Taniguchi Y 2007 Appl. Phys. Lett. 90 3Google Scholar

    [13]

    王利顺 2010 硕士学位论文 (保定: 河北大学)

    Wang L S 2010 M. S. Thesis (Baoding: Hebei University) (in Chinese)

    [14]

    Seo J A, Jeon S K, Lee J Y 2016 Org. Electron. 34 33Google Scholar

    [15]

    Baldo M A, Holmes R J, Forrest S R 2002 Phys. Rev. B 66 16Google Scholar

    [16]

    Murawski C, Leo K, Gather M C 2013 Adv. Mater. 25 6801Google Scholar

    [17]

    Song W, Kim T, Lee Y, Lee J Y 2017 Org. Electron. 43 82Google Scholar

    [18]

    Tan Y, Wang Z, Wei C, Liu Z, Bian Z, Huang C 2019 Org. Electron. 69 77Google Scholar

    [19]

    廖立敏, 邓兵, 雷光东 2017 光谱学与光谱分析 37 636Google Scholar

    Liao L M, Deng B, Lei G D 2017 Spectrosc. Spect. Anal. 37 636Google Scholar

    [20]

    林娜 2016 博士学位论文 (北京: 清华大学)

    Lin N 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [21]

    Patil V V, Lee K H, Lee J Y 2020 J. Mater. Chem. C 8 3051Google Scholar

    [22]

    Wu Z G, Zheng Y X, Zhou L, Wang Y, Pan Y 2017 Org. Electron. 42 141Google Scholar

    [23]

    Lee J H, Huang C L, Hsiao C H, Leung M K, Yang C C, Chao C C 2009 Appl. Phys. Lett. 94 3Google Scholar

    [24]

    Song W, Lee J Y 2017 Org. Electron. 49 152Google Scholar

    [25]

    Liu Z J, Zheng W Y, Wei P, Xu Z, Song D D, Qiao B, Zhao S L 2020 RSC Adv. 10 13215Google Scholar

  • 图 1  能级结构图 (a) 单极空穴器件; (b) 单极电子器件

    Fig. 1.  Energy level diagrams of (a) hole-only device and (b) electron-only device.

    图 2  (a) 单极电子器件的归一化发光光谱; (b) 单极空穴器件的归一化发光光谱

    Fig. 2.  (a) Normalized PL spectra of electron-only device; (b) normalized PL spectra of hole-only device.

    图 3  (a) 归一化光致发光亮度随电流密度的变化曲线; (b) 电流密度随电压的变化曲线

    Fig. 3.  (a) Normalized PL intensity versus current density; (b) J–V characteristics.

    图 4  (a) 单极电子器件的瞬态衰减曲线; (b) 单极空穴器件的瞬态衰减曲线

    Fig. 4.  (a) Transient PL decay curves of electron-only device; (b) transient PL decay curves of hole-only device.

    图 5  淬灭速率常数Kq随电流密度的变化曲线

    Fig. 5.  Quenching rate constant Kq versus cunrrent density.

    图 6  不同掺杂浓度下器件的电流效率随电流密度的变化曲线

    Fig. 6.  Current efficiency vs current density in devices with mCBP:DPABI, 5%—15% guest concentration.

    图 7  (a) 电流密度随电压变化曲线; (b) 发光强度随电压变化曲线; (c) 电流效率随电流密度变化曲线; (d) 外量子效率随发光强度变化曲线

    Fig. 7.  (a) J-V characteristics; (b) L-V characteristics; (c)η-J characteristics; (d) EQE-L characteristics.

  • [1]

    汪津, 赵毅, 谢文法, 段羽, 陈平, 刘式墉 2011 物理学报 60 579Google Scholar

    Wang J, Zhao Y, Xie W F, Duan Y, Chen P, Liu S Y 2011 Acta Phys. Sin. 60 579Google Scholar

    [2]

    Song W, Lee J Y 2017 Org. Electron. 51 1Google Scholar

    [3]

    崔荣朕, 唐艳茹, 马玉芹, 杨秀云, 耿丽华, 李云辉 2015 应用化学 32 855Google Scholar

    Cui R L, Tang Y R, Ma Y Q, Yang X Y, Gen L H, Li Y H 2015 Chin. J. Appl. Chem. 32 855Google Scholar

    [4]

    Xu Z, Tang B Z, Wang Y, Ma D G 2020 J. Mater. Chem. C 8 2614Google Scholar

    [5]

    Song D D, Zhao S L, Luo Y C, Aziz H 2010 Appl. Phys. Lett. 97 3Google Scholar

    [6]

    Luo Y C, Aziz H, Xu G, Popovic Z D 2007 Chem. Mater. 19 2288Google Scholar

    [7]

    Guo K, Li W, Zhang J, Zhang X, Wang X, Chen G, Xu T, Yang L, Zhu W, Wei B 2016 RSC Adv. 6 55626Google Scholar

    [8]

    Wang Q, Oswald I W H, Perez M R, Jia H, Gnade B E, Omary M A 2013 Adv. Funct. Mater. 23 5420Google Scholar

    [9]

    Reineke S, Walzer K, Leo K 2007 Phys. Rev. B 75 13Google Scholar

    [10]

    Baldo M A, Adachi C, Forrest S R 2000 Phys. Rev. B 62 10967Google Scholar

    [11]

    Giebink N C, Forrest S R 2008 Phys. Rev. B 77 9Google Scholar

    [12]

    Fukuda T, Okada T, Wei B, Ichikawa M, Taniguchi Y 2007 Appl. Phys. Lett. 90 3Google Scholar

    [13]

    王利顺 2010 硕士学位论文 (保定: 河北大学)

    Wang L S 2010 M. S. Thesis (Baoding: Hebei University) (in Chinese)

    [14]

    Seo J A, Jeon S K, Lee J Y 2016 Org. Electron. 34 33Google Scholar

    [15]

    Baldo M A, Holmes R J, Forrest S R 2002 Phys. Rev. B 66 16Google Scholar

    [16]

    Murawski C, Leo K, Gather M C 2013 Adv. Mater. 25 6801Google Scholar

    [17]

    Song W, Kim T, Lee Y, Lee J Y 2017 Org. Electron. 43 82Google Scholar

    [18]

    Tan Y, Wang Z, Wei C, Liu Z, Bian Z, Huang C 2019 Org. Electron. 69 77Google Scholar

    [19]

    廖立敏, 邓兵, 雷光东 2017 光谱学与光谱分析 37 636Google Scholar

    Liao L M, Deng B, Lei G D 2017 Spectrosc. Spect. Anal. 37 636Google Scholar

    [20]

    林娜 2016 博士学位论文 (北京: 清华大学)

    Lin N 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [21]

    Patil V V, Lee K H, Lee J Y 2020 J. Mater. Chem. C 8 3051Google Scholar

    [22]

    Wu Z G, Zheng Y X, Zhou L, Wang Y, Pan Y 2017 Org. Electron. 42 141Google Scholar

    [23]

    Lee J H, Huang C L, Hsiao C H, Leung M K, Yang C C, Chao C C 2009 Appl. Phys. Lett. 94 3Google Scholar

    [24]

    Song W, Lee J Y 2017 Org. Electron. 49 152Google Scholar

    [25]

    Liu Z J, Zheng W Y, Wei P, Xu Z, Song D D, Qiao B, Zhao S L 2020 RSC Adv. 10 13215Google Scholar

  • [1] 魏福贤, 刘俊宏, 彭腾, 汪波, 朱洪强, 陈晓莉, 熊祖洪. 利用热激子反向系间窜越的特征磁响应探测界面型OLED中的Dexter能量传递过程. 物理学报, 2023, 72(18): 187201. doi: 10.7498/aps.72.20230998
    [2] 史路林, 程锐, 王昭, 曹世权, 杨杰, 周泽贤, 陈燕红, 王国东, 惠得轩, 金雪剑, 吴晓霞, 雷瑜, 王瑜玉, 苏茂根. 近玻尔速度能区高电荷态离子与激光等离子体相互作用实验研究装置. 物理学报, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [3] 杨旭云, 陈永聪, 芦文斌, 朱晓梅, 敖平. 激子极化子共振束缚介导的光合作用能量传输. 物理学报, 2022, 71(23): 234202. doi: 10.7498/aps.71.20221412
    [4] 肖心明, 朱龙山, 关宇, 华杰, 王洪梅, 董贺, 汪津. 低效率滚降、发光颜色稳定的磷光白色有机电致发光器件. 物理学报, 2020, 69(4): 047202. doi: 10.7498/aps.69.20191594
    [5] 段雪珂, 任娟娟, 郝赫, 张淇, 龚旗煌, 古英. 微纳光子结构中光子和激子相互作用. 物理学报, 2019, 68(14): 144201. doi: 10.7498/aps.68.20190269
    [6] 汪津, 赵毅, 谢文法, 段羽, 陈平, 刘式墉. 利用DPVBi插层提高蓝色荧光有机电致发光器件的效率. 物理学报, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [7] 邓艳平, 吕彬彬, 田强. 非对称方势阱中的激子及其与声子的相互作用. 物理学报, 2010, 59(7): 4961-4966. doi: 10.7498/aps.59.4961
    [8] 姜文龙, 孟昭晖, 丛林, 汪津, 王立忠, 韩强, 孟凡超, 高永慧. 双量子阱结构OLED效率和电流的磁效应. 物理学报, 2010, 59(9): 6642-6646. doi: 10.7498/aps.59.6642
    [9] 王祖军, 唐本奇, 肖志刚, 刘敏波, 黄绍艳, 张勇. 质子辐照电荷耦合器件诱导电荷转移效率退化的实验分析. 物理学报, 2010, 59(6): 4136-4142. doi: 10.7498/aps.59.4136
    [10] 吴洪. 量子环上的负电荷激子. 物理学报, 2009, 58(12): 8549-8553. doi: 10.7498/aps.58.8549
    [11] 展晓元, 张 跃, 齐俊杰, 顾有松, 郑小兰. FePt薄膜中磁相互作用. 物理学报, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [12] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [13] 徐志凌, 杨 鹏, 刘丽英, 侯占佳, 徐 雷, 王文澄. 束缚电荷对玻璃材料二阶光学非线性的影响. 物理学报, 2000, 49(8): 1503-1506. doi: 10.7498/aps.49.1503
    [14] 陈钢进, 夏钟福, 张冶文. 主客体掺杂型非线性光学聚合物驻极体DR1/PMMA膜中空间和偶极电荷的相互作用特性. 物理学报, 1999, 48(6): 1066-1071. doi: 10.7498/aps.48.1066
    [15] 傅柔励, 叶红娟, 李 蕾, 傅荣堂, 缪 健, 孙 鑫, 张志林. 电场作用下高分子中自陷束缚激子的极化. 物理学报, 1998, 47(1): 94-101. doi: 10.7498/aps.47.94
    [16] 戴长建. 自电离序列间的相互作用. 物理学报, 1994, 43(3): 369-379. doi: 10.7498/aps.43.369
    [17] 郑杭, 方俊鑫. 碱卤晶体中激子-声子相互作用与光吸收谱线宽. 物理学报, 1987, 36(3): 339-349. doi: 10.7498/aps.36.339
    [18] 郑杭, 方俊鑫. 研究激子-声子相互作用问题的积分算符方法. 物理学报, 1986, 35(8): 1029-1039. doi: 10.7498/aps.35.1029
    [19] 郑杭, 方俊鑫. 碱卤晶体中的电荷转移型激子. 物理学报, 1986, 35(8): 1019-1028. doi: 10.7498/aps.35.1019
    [20] 钱祖文. 球形粒子之间的声相互作用. 物理学报, 1981, 30(4): 433-441. doi: 10.7498/aps.30.433
计量
  • 文章访问数:  9450
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-19
  • 修回日期:  2020-05-21
  • 上网日期:  2020-05-25
  • 刊出日期:  2020-08-20

/

返回文章
返回