搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用有机磁效应研究电荷平衡影响激基复合物器件发光效率的物理机制

赵茜 郑冬 王晶晶 陈敬 杨俊 周银琼 张可怡 熊祖洪

引用本文:
Citation:

利用有机磁效应研究电荷平衡影响激基复合物器件发光效率的物理机制

赵茜, 郑冬, 王晶晶, 陈敬, 杨俊, 周银琼, 张可怡, 熊祖洪

Research on physical mechanism of influence of charge balances on emission efficiency of exciplex-based OLEDs by using organic magnetic field effects

ZHAO Xi, ZHENG Dong, WANG Jingjing, CHEN Jing, YANG Jun, ZHOU Yinqiong, ZHANG Keyi, XIONG Zuhong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 电荷平衡会影响激基复合物有机发光二极管的发光效率, 然而对其背后的物理机制却缺乏充分的理解. 本文利用有机磁效应包括磁电导(magneto-conductance, MC)、磁电致发光(magneto-electroluminescence, MEL)和磁效率(magneto-efficiency, Mη)作为指纹式探测工具来研究电荷平衡影响激基复合物器件发光效率的物理机制. 实验发现, 非平衡器件的MC曲线中快速上升的低场效应(low-field effects, MCL, |B| ≤ 10 mT)和缓慢下降的高场效应(high-field effects, MCH, 10 < |B| ≤ 300 mT)分别归因于被磁场调控的系间窜越(intersystem crossing, ISC)过程和三重态激基复合物与多余电荷之间的三重态-电荷湮灭(triplet-charge annihilation, TCA)过程. 与非平衡器件不同, 平衡器件中快速下降的MCL和快速饱和的MCH分别归因于被磁场调控的反向系间窜越(reverse intersystem crossing, RISC)过程和平衡的载流子注入. 随着注入电流从200 μA减小到25 μA, 非平衡器件中MEL曲线的低场效应(MELL)始终反映被磁场调控的ISC过程, 然而平衡器件的MELL呈现从ISC向RISC过程的转换(ISC → RISC). 另外, 虽然非平衡和平衡器件中Mη曲线的低场效应(MηL)都归因于被磁场调控的ISC过程, 但是平衡器件中MηL的幅值为非平衡器件的~1/4. 这两种器件中不同的MC、MEL和Mη曲线揭示平衡的载流子注入会通过减弱TCA过程来增加三重态激基复合物的数量, 从而增强RISC过程. 因为RISC可以将不能退激辐射的三重态激基复合物转换为能退激辐射的单重态激基复合物, 所以平衡器件的发光效率比非平衡器件的更高. 显然, 本文利用有机磁效应对电荷平衡影响激基复合物器件发光效率这个现象提出了一种新的物理机制.
    Charge balances can influence the emission efficiency of exciplex-based organic light-emitting diodes (OLEDs), but so far, the physical mechanism behind this phenomenon is not fully understood. Here, organic magnetic field effects (OMFEs) including magneto-conductance (MC), magneto-electroluminescence (MEL), and magneto-efficiency (Mη) are used as fingerprint probing tools to study physical mechanism of influence of charge balanceon the emission efficiency of exciplex-based OLEDs. Specifically, low- and high-field effects of MC traces [MCL (|B| ≤ 10 mT) and MCH (10 < |B| ≤ 300 mT)] from the unbalanced device are separately attributed to the magnetic field (B)-mediated intersystem crossing (ISC) process and the B-mediated triplet-charge annihilation (TCA) process between triplet exciplex states and excessive charge carriers, whereas those from the balanced device are respectively attributed to the B-mediated reverse intersystem crossing (RISC) process and the balanced carrier injection. As the injection current decreases from 200 to 25 μA, low-field effects of MEL traces (MELL) form the unbalanced device always reflect the B-mediated ISC process, but those from the balanced device exhibit a conversion from ISC process to RISC process. Furthermore, although low-field effects of Mη traces (MηL) from unbalanced device and balanced device are attributed to the B-mediated ISC process, MηL value in the balanced device is approximately one-fourth of that in the unbalanced device. These different MC, MEL, and Mη traces reveal that the balanced carrier injection can increase the number of triplet exciplex states via weakening the TCA process, which leads to the enhanced RISC process. Because RISC can convert dark triplet exciplex states into bright singlet exciplex states, the emission efficiency of the balanced device is higher than that of the unbalanced one. Obviously, in this work OMFEs are used to provide a new physical mechanism for charge balance that influences the emission efficiency of exciplex-based OLEDs.
  • 图 1  (a), (b)能级排布图; (c)有机材料的分子结构图; (d)有机半导体薄膜的PL谱和器件的EL谱; (e), (f)电流随电压的变化关系和EL强度随电流的变化关系

    Fig. 1.  (a), (b) Energy-level diagrams; (c) molecular structures of organic materials; (d) PL spectra of organic semiconductor films and EL spectra of devices; (e), (f) current as a function of voltage and EL intensity as a function of current.

    图 2  (a), (b)器件1和器件2中MC曲线的电流依赖关系

    Fig. 2.  (a), (b) Current-dependent MC traces of devices 1 and 2.

    图 5  (a), (b)器件1和器件2中PP态和EX态的形成和演变通道

    Fig. 5.  (a), (b) Formation and evolution channels of PP and EX states in devices 1 and 2.

    图 3  (a), (b) 器件1和器件2中MEL曲线的电流依赖关系

    Fig. 3.  (a), (b) Current-dependent MEL traces of devices 1 and 2.

    图 4  (a), (b)器件1和器件2中Mη曲线的电流依赖关系

    Fig. 4.  (a), (b) Current-dependent Mη traces of devices 1 and 2.

    图 6  器件1、器件2和器件3的电流效率-电压特性曲线

    Fig. 6.  Current efficiency-voltage characteristics of devices 1, 2, and 3.

    图 7  器件3的能级结构、光电特性和有机磁效应 (a)能级结构; (b) EL谱; (c)亮度-电流特性; (d)—(f) MC, MEL和Mη曲线的电流依赖关系

    Fig. 7.  Energy-level structure, photoelectric properties, and OMFEs of device 3: (a) Energy-level structure; (b) EL spectrum; (c) brightness-current characteristic; (d)–(f) current-dependent MC, MEL, and Mη traces.

  • [1]

    Gu J N, Tang Z Y, Guo H Q, Chen Y, Xiao J, Chen Z J, Xiao L X 2022 J. Mater. Chem. C 10 4521Google Scholar

    [2]

    Amin N R A, Kesavan K K, Biring S, Lee C C, Yeh T H, Ko T Y, Liu S W, Wong K T, 2020 ACS Appl. Electron. Mater. 2 1011Google Scholar

    [3]

    Li W S, Zhang X W, Zhang Y, Xu K, Xu J W, Wang H, Li H O, Guo J, Mo J H, Yang P Z 2018 Synth. Met. 245 111Google Scholar

    [4]

    Ying S A, Yuan J K, Zhang S, Sun Q, Dai Y F, Qiao X F, Yang D Z, Chen J S, Ma D G 2019 J. Mater. Chem. C 7 7114Google Scholar

    [5]

    Hung W Y, Chiang P Y, Lin S W, Tang W C, Chen Y T, Liu S H, Chou P T, Hung Y T, Wong K T 2016 ACS Appl. Mater. Interfaces 8 4811Google Scholar

    [6]

    Sheng R, Li A S, Zhang F J, Song J, Duan Y, Chen P 2020 Adv. Optical Mater. 8 1901247Google Scholar

    [7]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 物理学报 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [8]

    Liu C H, Du H T, Yu Y, Chen Z, Ren J F, Fan J H, Liu Q, Han S H, Pang Z Y 2024 Org. Electron. 128 107025Google Scholar

    [9]

    Jin P F, Zhou Z Y, Wang H, Hao J J, Chen R, Wang J Y, Zhang C 2022 J. Phys. Chem. Lett. 13 2516Google Scholar

    [10]

    Wei F X, Chen J, Zhao X, Wu Y T, Wang H Y, Chen X L, Xiong Z H 2023 Adv. Sci. 10 2303192Google Scholar

    [11]

    Niu L B, Zhang Y, Chen L J, Zhang Q M, Guan Y X 2020 Org. Electron. 87 105971Google Scholar

    [12]

    赵茜, 陈敬, 彭腾, 刘俊宏, 汪波, 陈晓莉, 熊祖洪 2023 物理学报 72 167201Google Scholar

    Zhao X, Chen J, Peng T, Liu J H, Wang B, Chen X L, Xiong Z H 2023 Acta Phys. Sin. 72 167201Google Scholar

    [13]

    Wu F J, Zhao X, Zhu H Q, Tang X T, Ning Y R, Chen J, Chen X L, Xiong Z H 2022 ACS Photonics 9 2713Google Scholar

    [14]

    Shao M, Yan L, Li M X, Ilia I, Hu B 2013 J. Mater. Chem. C 1 1330Google Scholar

    [15]

    Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar

    [16]

    Hsiao C H, Liu S W, Chen C T, Lee J H 2010 Org. Electron. 11 1500Google Scholar

    [17]

    Hung W Y, Fang G C, Lin S W, Cheng S H, Wong K T, Kuo T Y, Chou P T 2014 Sci. Rep. 4 5161Google Scholar

    [18]

    Shen D, Chen W C, Lo M F, Lee C S 2021 Mater. Today Energy 20 100644Google Scholar

    [19]

    Zhang Q, Liu X J, Jiao F, Braun S, Jafari M J, Crispin X, Ederth T, Fahlman M 2017 J. Mater. Chem. C 5 275Google Scholar

    [20]

    Hua J, Li J X, Zhan Z L, Chai Y, Cheng Z Y, Li P D, Dong H, Wang J 2022 RSC Adv. 12 21932Google Scholar

    [21]

    Miao Y Q, Wang G L, Yin M N, Guo Y Y, Zhao B, Wang H 2023 Chem. Eng. J. 461 141921Google Scholar

    [22]

    Sheng Y, Nguyen T D, Veeraraghavan G, Mermer Ö, Wohlgenannt M, Qiu S, Scherf U 2006 Phys. Rev. B 74 045213Google Scholar

    [23]

    Wang Y F, Tiras K S, Harmon N J, Wohlgenannt M, Flatté M E 2016 Phys. Rev. X 6 011011

    [24]

    Zhang T T, Holford D F, Gu H, Kreouzis T, Zhang S J, Gillin W P 2016 Appl. Phys. Lett. 108 023303Google Scholar

    [25]

    Hu Y Q, Tang X T, Pan R H, Deng J Q, Zhu H Q, Xiong Z H 2019 Phys. Chem. Chem. Phys. 21 17673Google Scholar

    [26]

    汤仙童, 潘睿亨, 熊祖洪 2023 科学通报 68 2401

    Tang X T, Pan R H, Xiong Z H 2023 Chin. Sci. Bull. 68 2401

    [27]

    Crooker S A, Liu F L, Kelley M R, Martinez N J D, Nie W Y, Mohite A D, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

    [28]

    Liu F L, Kelley M R, Crooker S A, Nie W Y, Mohite A D, Ruden P P, Smith D L 2014 Phys. Rev. B 90 235314Google Scholar

    [29]

    Chen P, Peng Q M, Yao L, Gao N, Li F 2013 Appl. Phys. Lett. 102 063301Google Scholar

    [30]

    Peng Q M, Li A W, Fan Y X, Chen P, Li F 2014 J. Mater. Chem. C 2 6264Google Scholar

    [31]

    Janssen P, Cox M, Wouters S H W, Kemerink M, Wienk M M, Koopmans B 2013 Nat. Commun. 4 2286Google Scholar

    [32]

    Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar

    [33]

    Zhang T Y, Chu B, Li W L, Su Z S, Peng Q M, Zhao B, Luo Y S, Jin F M, Yan X W, Gao Y, Wu H R, Zhang F, Fan D, Wang J B 2014 ACS Appl. Mater. Interfaces 6 11907Google Scholar

    [34]

    吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪 2022 物理学报 71 227201Google Scholar

    Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201Google Scholar

    [35]

    Kim K H, Yoo S J, Kim J J 2016 Chem. Mater. 28 1936Google Scholar

    [36]

    Zhu H Q, Jia W Y, Chen L X, Tang X T, Hu Y Q, Pan R H, Deng J Q, Xiong Z H 2019 J. Mater. Chem. C 7 553Google Scholar

  • [1] 彭腾, 王辉耀, 赵茜, 刘俊宏, 汪波, 王晶晶, 周银琼, 张可怡, 杨俊, 熊祖洪. 电子注入层迁移率对Rubrene/C60基发光二极管半带隙开启电压的调控. 物理学报, doi: 10.7498/aps.73.20240864
    [2] 任兴, 于宏宇, 张勇. 基于BCPO发光材料近紫外有机发光二极管的电致发光效率与稳定性. 物理学报, doi: 10.7498/aps.73.20231301
    [3] 魏福贤, 刘俊宏, 彭腾, 汪波, 朱洪强, 陈晓莉, 熊祖洪. 利用热激子反向系间窜越的特征磁响应探测界面型OLED中的Dexter能量传递过程. 物理学报, doi: 10.7498/aps.72.20230998
    [4] 赵茜, 陈敬, 彭腾, 刘俊宏, 汪波, 陈晓莉, 熊祖洪. 激基复合物有机发光二极管中系间窜越和反向系间窜越过程的非单调电流依赖关系. 物理学报, doi: 10.7498/aps.72.20230765
    [5] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程. 物理学报, doi: 10.7498/aps.72.20230949
    [6] 保希, 关云霞, 李万娇, 宋家一, 陈丽佳, 徐爽, 彭柯敖, 牛连斌. 载流子阶梯效应调控有机发光二极管三线态激子的解离和散射. 物理学报, doi: 10.7498/aps.72.20230851
    [7] 吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪. 激基复合物与电致激基复合物共存体系中Dexter能量传递导致的负磁效率. 物理学报, doi: 10.7498/aps.71.20221288
    [8] 刘萌娇, 张新稳, 王炯, 秦雅博, 陈月花, 黄维. 非周期微纳结构增强有机发光二极管光耦合输出的研究进展. 物理学报, doi: 10.7498/aps.67.20181209
    [9] 张雅男, 王俊锋. 利用发光层梯度掺杂改善顶发射白光有机发光二极管光谱的稳定性. 物理学报, doi: 10.7498/aps.64.097801
    [10] 黄迪, 徐征, 赵谡玲. 使用PTB7作为阳极修饰层提高有机发光二极管的性能. 物理学报, doi: 10.7498/aps.63.027301
    [11] 刘佰全, 兰林锋, 邹建华, 彭俊彪. 具有新型双空穴注入层的有机发光二极管. 物理学报, doi: 10.7498/aps.62.087302
    [12] 焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪. 有机发光二极管的光致磁电导效应. 物理学报, doi: 10.7498/aps.61.187305
    [13] 张勇, 刘亚莉, 焦威, 陈林, 熊祖洪. 有机发光器件的磁电导效应. 物理学报, doi: 10.7498/aps.61.117106
    [14] 刘南柳, 艾娜, 胡典钢, 余树福, 彭俊彪, 曹镛, 王坚. 旋涂方式对有机发光显示屏发光均匀性及性能的影响. 物理学报, doi: 10.7498/aps.60.087805
    [15] 杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维. 有机发光二极管光取出技术研究进展. 物理学报, doi: 10.7498/aps.60.047809
    [16] 张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪. 基于Alq3的有机发光二极管的磁电导效应. 物理学报, doi: 10.7498/aps.59.5817
    [17] 张秀龙, 杨盛谊, 娄志东, 侯延冰. 有机电致发光器件的动态电学特性. 物理学报, doi: 10.7498/aps.56.1632
    [18] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管. 物理学报, doi: 10.7498/aps.56.1156
    [19] 许雪梅, 彭景翠, 李宏建, 瞿述, 赵楚军, 罗小华. 有机层界面对双层有机发光二极管复合效率的影响. 物理学报, doi: 10.7498/aps.53.286
    [20] 许雪梅, 彭景翠, 李宏建, 瞿述, 罗小华. 载流子迁移率对单层有机发光二极管复合效率的影响. 物理学报, doi: 10.7498/aps.51.2380
计量
  • 文章访问数:  293
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-16
  • 修回日期:  2025-01-11
  • 上网日期:  2025-03-20

/

返回文章
返回