搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激基复合物与电致激基复合物共存体系中Dexter能量传递导致的负磁效率

吴雨廷 朱洪强 魏福贤 王辉耀 陈敬 宁亚茹 吴凤娇 陈晓莉 熊祖洪

引用本文:
Citation:

激基复合物与电致激基复合物共存体系中Dexter能量传递导致的负磁效率

吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪

Negative magnetic efficiency induced by Dexter energy transfer in coexistence system of exciplex and electroplex

Wu Yu-Ting, Zhu Hong-Qiang, Wei Fu-Xian, Wang Hui-Yao, Chen Jing, Ning Ya-Ru, Wu Feng-Jiao, Chen Xiao-Li, Xiong Zu-Hong
PDF
HTML
导出引用
  • 因具有反向系间窜越过程(reverse intersystem crossing, RISC)在低成本就可实现高效率发光, 激基复合物(exciplex)型有机发光二极管(organic light-emitting diodes, OLEDs)是目前的一个研究热点. 其微观过程通常表现为极化子对的系间窜越(ISC)过程占主导, 引起的磁电致发光(magneto-electroluminescence, MEL)效应和磁电导(magneto-conductance, MC)效应都是正值, 且MEL幅值大于MC幅值; 由于在一般电流(I)范围内存在线形关系EL $ \propto \eta \cdot I $, 对应的磁效率(magneto-efficiency, Mη)也是正值. 本工作却在激基复合物与电致激基复合物(electroplex)共存的器件中发现: 虽然在小电流下MEL值也大于MC值, 但是电流增大后MEL值逐渐小于MC值, 即Mη值由正变成负. 通过对比该型器件与纯激基复合物型器件中不同的物理微观过程发现: 激基复合物与电致激基复合物共存器件中存在从激基复合物到电致激基复合物的Dexter能量转移(Dexter energy transfer, DET)过程, 此过程会增强电致激基复合物的RISC过程, 且DET过程会随电流的增大而增强, 导致器件在大电流下表现为RISC过程主导的负Mη. 本工作有助于认识激基复合物型OLEDs中激发态间的相互作用规律, 也为制作高效率发光器件提供了理论参考.
    Exciplex-type organic light-emitting diodes (OLEDs) are research focus at present, because of their high-efficiency luminescence at low cost due to the reverse intersystem crossing (RISC, EX1 ← EX3). Their microscopic processes usually exhibit intersystem crossing (ISC, PP1 → PP3) process dominated by polar pairs, leading the magneto-electroluminescence [MEL, MEL = (ΔEL)/EL × 100%] effect values and the magneto-conductance [MC, MC = (ΔI)/I × 100%] effect values to be both positive, the amplitude of MEL to be greater than that of MC at the same current, and the corresponding magnetic efficiency [Mη, Mη = (Δη)/η × 100%] values to be also positive due to the linear relationship EL $ \propto \eta\cdot I $ within general current (I) range. Surprisingly, although the MEL value of the device coexisting with exciplex and electroplex is also greater than the MC value at low current, MEL value is less than MC value at high current. In other words, Mη value of this device undergoes a conversion from positive to negative with current increasing. In this work, to find out the reason why Mη value of exciplex-type OLED formed by TAPC and TPBi shows a negative value under high current and also to study the micro-dynamic evolution mechanism of spin-pair states in this device, three OLEDs are fabricated and their luminescence spectra and organic magnetic field effect curves are measured. The results indicate that the electroplex is produced in the exciplex-type OLED formed by TAPC and TPBi. Since the triplet exciton energy of monomers TAPC and TPBi is higher than those of triplet charge-transfer states of exciplex (CT${}_3^{\rm{ex}} $), and the CT${}_3^{\rm{ex}} $ energy is greater than the energy of triplet charge-transfer states of electroplex (CT${}_3^{\rm{el}} $), the CT${}_3^{\rm{ex}} $ energy can only be transferred to CT${}_3^{\rm{el}} $ through Dexter energy transfer (DET) process without other loss channels. The electroluminescence (EL) spectrum of this device shows that the luminescence intensity of exciplex is greater than that of electroplex, which indicates that the quantity of exciplex is more than that of electroplex. Besides, EL spectra at different currents prove that the formation rate of exciplex is faster than that of electroplex with current increasing. Owing to less quantity of exciplex at low current, the DET process from CT${}_3^{\rm{ex}} $ to CT${}_3^{\rm{el}} $ is too weak to facilitate the RISC process of charge-transfer states of electroplex (CTel). Therefore, the low field amplitude of Mη curve is positive at low current. The number of spin-pair states of exciplex increases with current increasing, which enhances the DET process. These processes of direct charge carriers trapped and energy transferred critically increase the number of CT${}_3^{\rm{el}} $ at high current, which greatly strengthens the RISC process of CTel. Therefore, the low field amplitude of Mη curve changes from positive to negative with current increasing. Furthermore, the Mη curves of this device are measured when only exciplex exists and only electroplex exists in the employing filter, respectively. As expected, the results confirm the accuracy of the mechanism of the negative value of the total Mη for this device. Obviously, this work contributes to the comprehension of the internal micro-physical mechanism in OLEDs and the law of interactions between excited states.
      通信作者: 朱洪强, 20132013@cqnu.edu.cn ; 熊祖洪, zhxiong@swu.edu.cn
    • 基金项目: 重庆市教委科技项目(批准号: KJQN202200569)、国家自然科学基金(批准号: 12104076, 11874305)、重庆自然科学基金(批准号: cstc2019jcyj-msxmX0560)和重庆师范大学校级基金(批准号: 21XLB050)资助的课题.
      Corresponding author: Zhu Hong-Qiang, 20132013@cqnu.edu.cn ; Xiong Zu-Hong, zhxiong@swu.edu.cn
    • Funds: Project supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202200569), the National Natural Science Foundation of China (Grant Nos. 12104076, 11874305), the Chongqing Natural Science Foundation project (Grant No. cstc2019jcyj-msxmX0560) and the University-level Foundation of Chongqing Normal University (Grant No. 21XLB050).
    [1]

    Godlewski J, Obarowska M 2007 Eur. Phys. J. -Spec. Top. 144 51Google Scholar

    [2]

    Pan Y Y, Li W J, Zhang S T, Yao L, Gu C, Xu H, Yang B, Ma Y G 2014 Adv. Opt. Mater. 2 510Google Scholar

    [3]

    Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

    [4]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [5]

    Liu F L, Kelley M R, Crooker S A, Nie W Y, Mohite A D, Ruden P P, Smith D L 2014 Phys. Rev. B 90 235314Google Scholar

    [6]

    Kalinowski J, Cocchi M, Virgili D, Marco P D, Fattori V 2003 Chem. Phys. Lett. 380 710Google Scholar

    [7]

    Zhang T T, Holford D F, Gu H, Kreouzis T, Zhang S J, Gillin W P 2016 Appl. Phys. Lett. 108 023303Google Scholar

    [8]

    Zhang L Cheah K W 2018 Sci. Rep. 8 8832Google Scholar

    [9]

    Bera K, Douglas C J, Frontiera R R 2017 J. Phys. Chem. Lett. 8 5929Google Scholar

    [10]

    赵茜, 汤仙童, 潘睿亨, 许静, 屈芬兰, 熊祖洪 2019 科学通报 64 2514Google Scholar

    Zhao X, Tang X T, Pan R H, Xu J, Qu F L, Xiong Z H 2019 Chin. Sci. Bull. 64 2514Google Scholar

    [11]

    Doubleday C, Turro N J, Wang J F 1989 Acc. Chem. Res. 22 199Google Scholar

    [12]

    张勇, 刘亚莉, 焦威, 陈林, 熊祖洪 2012 物理学报 61 117106Google Scholar

    Zhang Y, Liu Y L, Jiao W, Chen L, Xiong Z H 2012 Acta Phys. Sin. 61 117106Google Scholar

    [13]

    陈秋松, 袁德, 贾伟尧, 陈历相, 邹越, 向杰, 陈颖冰, 张巧明, 熊祖洪 2015 物理学报 64 177801Google Scholar

    Chen Q S, Yuan D, Jia W Y, Chen L X, Zou Y, Xiang J, Chen Y B, Zhang Q M, Xiong Z H 2015 Acta Phys. Sin. 64 177801Google Scholar

    [14]

    Xiang J, Chen Y B, Yuan D, Jia W Y, Zhang Q M, Xiong Z H 2016 Appl. Phys. Lett. 109 103301Google Scholar

    [15]

    Zhang Y, Liu R, Lei Y L, Xiong Z H 2009 Appl. Phys. Lett. 94 083307Google Scholar

    [16]

    Chen P, Song Q L, Choy W C H, Ding B F, Liu Y L, Xiong Z H 2011 Appl. Phys. Lett. 99 143305Google Scholar

    [17]

    Wang Y F, Sahin-Tiras K, Harmon H J, Wohlgenannt M, Flatté M E 2016 Phys. Rev. X 6 011011Google Scholar

    [18]

    Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar

    [19]

    Zhang T Y, Chu B, Li W L, Su Z S, Peng Q M, Zhao B, Luo Y S, Jin F M, Yan X W, Gao Y, Wu H R, Zhang F, Fan D, Wang J B 2014 ACS Appl. Mater. Interfaces 6 11907Google Scholar

    [20]

    Gruenbaum W T, Sorriero L J, Borsenberger P M, Zumbulyadis N 1996 Jpn. J. Appl. Phys. 35 2714Google Scholar

    [21]

    雷俊峰, 郝玉英, 樊文浩, 房晓红, 许并社 2009 发光学报 30 590

    Lei J F, Hao Y Y, Fan W H, Fang X H, Xu B S 2009 Chin. J. Lumin. 30 590

    [22]

    Wei M Y, Gui G, Chung Y H, Xiao L X, Qu B, Chen Z J 2015 Phys. Status Solidi B 252 1711Google Scholar

    [23]

    Deng J Q, Jia W Y, Chen Y B, Liu D Y, Hu Y Q, Xiong Z H 2017 Sci. Rep. 7 44396Google Scholar

    [24]

    Sheng Y, Nguyen T D, Veeraraghavan G, Mermer Ö, Wohlgenannt M, Qiu S, Scherf U 2006 Phys. Rev. B 74 045213Google Scholar

    [25]

    Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar

    [26]

    Scharff T, Ratzke W, Zipfel J, Klemm P, Bange S, Lupton J M 2021 Nat. Commun. 12 2071Google Scholar

    [27]

    Janssen P, Cox M, Wouters S H W, Kemerink M, Wienk M M, Koopmans B 2013 Nat. Commun. 4 2286Google Scholar

    [28]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 物理学报 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [29]

    Liu W, Chen J X, Zheng C J, Wang K, Chen D Y, Li F, Dong Y P, Lee C S, Ou X M, Zhang X H 2016 Adv. Funct. Mater. 26 2002Google Scholar

    [30]

    Zhang M, Liu W, Zheng C J, Wang K, Shi Y Z, Li X, Lin H, Tao S L, Zhang X H 2019 Adv. Sci. 6 1801938Google Scholar

    [31]

    Chen P, Peng Q M, Yao L, Gao N, Li F 2013 Appl. Phys. Lett. 102 063301Google Scholar

    [32]

    Sasabe H, Tanaka D, Yokoyama D, Chiba T, Pu Y J, Nakayama K, Yokoyama M, Kido J 2011 Adv. Funct. Mater. 21 336Google Scholar

    [33]

    Liu X K, Chen Z, Zheng C J, Liu C L, Lee C S, Li F, Ou X M, Zhang X H 2015 Adv. Mater. 27 2378Google Scholar

    [34]

    Hu B, Wu Y 2007 Nat. Mater. 6 985Google Scholar

    [35]

    Bagnich S A, Niedermeier U, Melzer C, Sarfert W, von Seggern H 2009 J. Appl. Phys. 106 113702Google Scholar

    [36]

    Fan Y X, Sun A H, Tian Y H, Zhou P C, Niu Y X, Shi Wei, Wei B 2022 J. Phys. D: Appl. Phys. 55 315103Google Scholar

    [37]

    Xu Z, Gong Y B, Dai Y F, Sun Q, Qiao X F, Yang D Z, Zhan X J, Li Z, Tang B Z, Ma D G 2019 Adv. Opt. Mater. 7 1801539Google Scholar

    [38]

    Wu Z B, Wang Q, Yu L, Chen J S, Qiao X F, Ahamad T, Alshehri S M, Yang C L, Ma D G 2016 ACS Appl. Mater. Interfaces 8 28780Google Scholar

    [39]

    Mondal A, Paterson L, Cho J, et al. 2021 Chem. Phys. Rev. 2 031304Google Scholar

  • 图 1  能级结构和光谱 (a), (d) 器件1; (b), (e) 器件2; (c), (f) 器件3

    Fig. 1.  Energy level structures and luminance intensity: (a), (d) Device 1; (b), (e) device 2; (c), (f) device 3.

    图 2  (a)—(c) 室温下不同电流时器件1的MC, MEL和Mη曲线; (d) 它们的低场幅值随电流的变化规律; (e) 器件1的微观机理图

    Fig. 2.  (a)–(c) The current-dependent MC, MEL and Mη curves of device 1 at room temperature; (d) their low magnetic field values as a function of current; (e) microscopic mechanisms in device 1.

    图 3  (a)—(c) 器件2和(d)—(f) 器件3室温下不同电流时的MC, MEL和Mη曲线

    Fig. 3.  The current-dependent MC, MEL and Mη curves of device 2 (a)–(c) and device 3 (d)–(f) at room temperature.

    图 4  (a)器件2和(b)器件3的微观机理图

    Fig. 4.  Microscopic mechanisms in device 2 (a) and device 3 (b).

    图 5  (a)器件2和(b)器件3在室温下不同电流时的归一化EL谱; 器件3中(c)激基复合物和(d)电致激基复合物的Mη曲线

    Fig. 5.  The normalized current-dependent EL spectra of device 2 (a) and device 3 (b) at room temperature; Mη curves of exciplex (c) and electroplex (d) for device 3.

  • [1]

    Godlewski J, Obarowska M 2007 Eur. Phys. J. -Spec. Top. 144 51Google Scholar

    [2]

    Pan Y Y, Li W J, Zhang S T, Yao L, Gu C, Xu H, Yang B, Ma Y G 2014 Adv. Opt. Mater. 2 510Google Scholar

    [3]

    Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

    [4]

    Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar

    [5]

    Liu F L, Kelley M R, Crooker S A, Nie W Y, Mohite A D, Ruden P P, Smith D L 2014 Phys. Rev. B 90 235314Google Scholar

    [6]

    Kalinowski J, Cocchi M, Virgili D, Marco P D, Fattori V 2003 Chem. Phys. Lett. 380 710Google Scholar

    [7]

    Zhang T T, Holford D F, Gu H, Kreouzis T, Zhang S J, Gillin W P 2016 Appl. Phys. Lett. 108 023303Google Scholar

    [8]

    Zhang L Cheah K W 2018 Sci. Rep. 8 8832Google Scholar

    [9]

    Bera K, Douglas C J, Frontiera R R 2017 J. Phys. Chem. Lett. 8 5929Google Scholar

    [10]

    赵茜, 汤仙童, 潘睿亨, 许静, 屈芬兰, 熊祖洪 2019 科学通报 64 2514Google Scholar

    Zhao X, Tang X T, Pan R H, Xu J, Qu F L, Xiong Z H 2019 Chin. Sci. Bull. 64 2514Google Scholar

    [11]

    Doubleday C, Turro N J, Wang J F 1989 Acc. Chem. Res. 22 199Google Scholar

    [12]

    张勇, 刘亚莉, 焦威, 陈林, 熊祖洪 2012 物理学报 61 117106Google Scholar

    Zhang Y, Liu Y L, Jiao W, Chen L, Xiong Z H 2012 Acta Phys. Sin. 61 117106Google Scholar

    [13]

    陈秋松, 袁德, 贾伟尧, 陈历相, 邹越, 向杰, 陈颖冰, 张巧明, 熊祖洪 2015 物理学报 64 177801Google Scholar

    Chen Q S, Yuan D, Jia W Y, Chen L X, Zou Y, Xiang J, Chen Y B, Zhang Q M, Xiong Z H 2015 Acta Phys. Sin. 64 177801Google Scholar

    [14]

    Xiang J, Chen Y B, Yuan D, Jia W Y, Zhang Q M, Xiong Z H 2016 Appl. Phys. Lett. 109 103301Google Scholar

    [15]

    Zhang Y, Liu R, Lei Y L, Xiong Z H 2009 Appl. Phys. Lett. 94 083307Google Scholar

    [16]

    Chen P, Song Q L, Choy W C H, Ding B F, Liu Y L, Xiong Z H 2011 Appl. Phys. Lett. 99 143305Google Scholar

    [17]

    Wang Y F, Sahin-Tiras K, Harmon H J, Wohlgenannt M, Flatté M E 2016 Phys. Rev. X 6 011011Google Scholar

    [18]

    Zhao X, Tang X T, Zhu H Q, Ma C H, Wang Y, Ye S N, Tu L Y, Xiong Z H 2021 ACS Appl. Electron. Mater. 3 3034Google Scholar

    [19]

    Zhang T Y, Chu B, Li W L, Su Z S, Peng Q M, Zhao B, Luo Y S, Jin F M, Yan X W, Gao Y, Wu H R, Zhang F, Fan D, Wang J B 2014 ACS Appl. Mater. Interfaces 6 11907Google Scholar

    [20]

    Gruenbaum W T, Sorriero L J, Borsenberger P M, Zumbulyadis N 1996 Jpn. J. Appl. Phys. 35 2714Google Scholar

    [21]

    雷俊峰, 郝玉英, 樊文浩, 房晓红, 许并社 2009 发光学报 30 590

    Lei J F, Hao Y Y, Fan W H, Fang X H, Xu B S 2009 Chin. J. Lumin. 30 590

    [22]

    Wei M Y, Gui G, Chung Y H, Xiao L X, Qu B, Chen Z J 2015 Phys. Status Solidi B 252 1711Google Scholar

    [23]

    Deng J Q, Jia W Y, Chen Y B, Liu D Y, Hu Y Q, Xiong Z H 2017 Sci. Rep. 7 44396Google Scholar

    [24]

    Sheng Y, Nguyen T D, Veeraraghavan G, Mermer Ö, Wohlgenannt M, Qiu S, Scherf U 2006 Phys. Rev. B 74 045213Google Scholar

    [25]

    Yuan P S, Qiao X F, Yan D H, Ma D G 2018 J. Mater. Chem. C 6 5721Google Scholar

    [26]

    Scharff T, Ratzke W, Zipfel J, Klemm P, Bange S, Lupton J M 2021 Nat. Commun. 12 2071Google Scholar

    [27]

    Janssen P, Cox M, Wouters S H W, Kemerink M, Wienk M M, Koopmans B 2013 Nat. Commun. 4 2286Google Scholar

    [28]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 物理学报 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W Y, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [29]

    Liu W, Chen J X, Zheng C J, Wang K, Chen D Y, Li F, Dong Y P, Lee C S, Ou X M, Zhang X H 2016 Adv. Funct. Mater. 26 2002Google Scholar

    [30]

    Zhang M, Liu W, Zheng C J, Wang K, Shi Y Z, Li X, Lin H, Tao S L, Zhang X H 2019 Adv. Sci. 6 1801938Google Scholar

    [31]

    Chen P, Peng Q M, Yao L, Gao N, Li F 2013 Appl. Phys. Lett. 102 063301Google Scholar

    [32]

    Sasabe H, Tanaka D, Yokoyama D, Chiba T, Pu Y J, Nakayama K, Yokoyama M, Kido J 2011 Adv. Funct. Mater. 21 336Google Scholar

    [33]

    Liu X K, Chen Z, Zheng C J, Liu C L, Lee C S, Li F, Ou X M, Zhang X H 2015 Adv. Mater. 27 2378Google Scholar

    [34]

    Hu B, Wu Y 2007 Nat. Mater. 6 985Google Scholar

    [35]

    Bagnich S A, Niedermeier U, Melzer C, Sarfert W, von Seggern H 2009 J. Appl. Phys. 106 113702Google Scholar

    [36]

    Fan Y X, Sun A H, Tian Y H, Zhou P C, Niu Y X, Shi Wei, Wei B 2022 J. Phys. D: Appl. Phys. 55 315103Google Scholar

    [37]

    Xu Z, Gong Y B, Dai Y F, Sun Q, Qiao X F, Yang D Z, Zhan X J, Li Z, Tang B Z, Ma D G 2019 Adv. Opt. Mater. 7 1801539Google Scholar

    [38]

    Wu Z B, Wang Q, Yu L, Chen J S, Qiao X F, Ahamad T, Alshehri S M, Yang C L, Ma D G 2016 ACS Appl. Mater. Interfaces 8 28780Google Scholar

    [39]

    Mondal A, Paterson L, Cho J, et al. 2021 Chem. Phys. Rev. 2 031304Google Scholar

  • [1] 杨楠楠, 王尚民, 张家良, 温小琼, 赵凯. 改进型机-电模型及脉冲等离子体推力器能量转化效率分析. 物理学报, 2024, 73(21): 215202. doi: 10.7498/aps.73.20241117
    [2] 王辉耀, 魏福贤, 吴雨廷, 彭腾, 刘俊宏, 汪波, 熊祖洪. 激基复合物有机发光二极管中平衡载流子增强电荷转移态的反向系间窜越过程. 物理学报, 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [3] 赵茜, 陈敬, 彭腾, 刘俊宏, 汪波, 陈晓莉, 熊祖洪. 激基复合物有机发光二极管中系间窜越和反向系间窜越过程的非单调电流依赖关系. 物理学报, 2023, 72(16): 167201. doi: 10.7498/aps.72.20230765
    [4] 魏福贤, 刘俊宏, 彭腾, 汪波, 朱洪强, 陈晓莉, 熊祖洪. 利用热激子反向系间窜越的特征磁响应探测界面型OLED中的Dexter能量传递过程. 物理学报, 2023, 72(18): 187201. doi: 10.7498/aps.72.20230998
    [5] 王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪. 纯红荧烯器件中极化子对的系间窜越与高能三重态激子的反向系间窜越过程“消失”的原因. 物理学报, 2022, 71(21): 217201. doi: 10.7498/aps.71.20221060
    [6] 宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪. 利用发光磁效应研究同分异构体mCBP和CBP作为给体的激基复合物器件的微观过程. 物理学报, 2022, 71(8): 087201. doi: 10.7498/aps.71.20212068
    [7] 赵丹, 王帅虎, 刘少刚, 崔进, 董立强. 磁流变液构成的类梯度结构振动传递特性. 物理学报, 2020, 69(9): 098301. doi: 10.7498/aps.69.20200326
    [8] 延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚. 反馈脉冲棘轮的能量转化效率研究. 物理学报, 2018, 67(19): 190501. doi: 10.7498/aps.67.20181066
    [9] 王倩, 赵江山, 罗时文, 左都罗, 周翊. ArF准分子激光系统的能量效率特性. 物理学报, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [10] 沈应龙, 唐春梅, 盛秋春, 刘双, 李文涛, 王龙飞, 陈丹平. 铈铕共掺高钆氧化物玻璃的发光性能及能量传递效应. 物理学报, 2013, 62(11): 117803. doi: 10.7498/aps.62.117803
    [11] 孟维欣, 郝玉英, 许慧侠, 王华, 刘旭光, 许并社. 基于一种新型有机金属配合物的量子阱结构有机电致白光器件的性能研究. 物理学报, 2011, 60(9): 098102. doi: 10.7498/aps.60.098102
    [12] 高剑森, 张宁. 异型磁体/铁电复合材料中的电致变磁导及电致变阻抗效应. 物理学报, 2009, 58(12): 8607-8611. doi: 10.7498/aps.58.8607
    [13] 卞雷祥, 文玉梅, 李平. 磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析. 物理学报, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [14] 高 琨, 付吉永, 刘德胜, 解士杰. 链间耦合对聚合物中双激子态反向极化的影响. 物理学报, 2005, 54(2): 665-668. doi: 10.7498/aps.54.665
    [15] 刘政威, 阳效良, 肖思国. 提高能量上转换效率的实验探讨. 物理学报, 2001, 50(9): 1795-1779. doi: 10.7498/aps.50.1795
    [16] 陈晓波, N.Sawanobori, 聂玉昕. 氟氧化物玻璃陶瓷中交叉能量传递与荧光防伪的初步研究. 物理学报, 2000, 49(12): 2488-2493. doi: 10.7498/aps.49.2488
    [17] 陈宝玖, 秦伟平, 王海宇, 许 武, 黄世华. 能量传递过程的计算机模拟. 物理学报, 1999, 48(3): 545-549. doi: 10.7498/aps.48.545
    [18] 朱立, 鲍世宁, 徐亚伯, 徐纯一. Cu(111)面K-O复合物的形成. 物理学报, 1992, 41(8): 1385-1388. doi: 10.7498/aps.41.1385
    [19] 郭慧群, 赵见高, 王震西, 谢侃, 沈保根. (Tb,Dy)Fe2金属间化合物的巨大磁致伸缩. 物理学报, 1979, 28(1): 121-124. doi: 10.7498/aps.28.121
    [20] 徐芝屏. 关于复合发光效率的测定. 物理学报, 1961, 17(1): 18-22. doi: 10.7498/aps.17.18
计量
  • 文章访问数:  5197
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-08-02
  • 上网日期:  2022-11-07
  • 刊出日期:  2022-11-20

/

返回文章
返回