搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进型机-电模型及脉冲等离子体推力器能量转化效率分析

杨楠楠 王尚民 张家良 温小琼 赵凯

引用本文:
Citation:

改进型机-电模型及脉冲等离子体推力器能量转化效率分析

杨楠楠, 王尚民, 张家良, 温小琼, 赵凯

An Improved Electro-Mechanical Model and Its Application for PPT Electro-Mechanical Efficiency

Yang Nan-Nan, Wang Shang-Min, Zhang Jia-Liang, Wen Xiao-Qiong, Zhao Kai
PDF
导出引用
  • 最初机-电模型是针对电磁轨道炮的电磁加速过程提出的,脉冲等离子体推力器(PPT)的工作原理也是通过电磁加速产生元冲量,因此机-电模型是PPT能量转化及元冲量产生机制的主要理论分析工具之一。但是作为PPT放电回路一部分的等离子体通道,其几何形态与目前机-电模型的电流片模型存在明显差异。PPT放电通道在离开推进剂表面向外喷出过程中多呈现弯曲形状,并不断变化,而非平直片状。结合PPT放电通道的实际形态,本文提出了PPT放电通道的二维形态电流片模型,建立基于二维电流片的改进型机-电模型。通过分析放电通道受力情况以及电磁加速过程,推导了PPT羽流的电磁加速动能与放电回路电感量随时间演变函数的关系。针对机-电模型电路方程,提出了分段拟合PPT放电波形获得回路电感量随时间演变函数的算法。形成了基于PPT放电波形分析得到羽流电磁加速动能的计算方案。将改进型机-电模型应用于PPT样机能量转化效率评价,通过分析PPT放电能量转化过程阐释了PPT机-电转化效率低的原因,提出了提高PPT机-电效率的一种探索思路。
    The primary electro-mechanical model is developed for the acceleration kinetics of electromagnetic railguns. Pulsed plasma thrusters (PPT), whose operation principle is something like that of electromagnetic railguns, generate thrust via electromagnetic acceleration of plasmas. Therefore, the electro-mechanical model serves as a valuable analytical tool to explore the mechanisms of energy conversion and thrust generation of PPTs. In fact, a PPT initiates discharge at its propellant surface and then ejects the discharged channel away to form accelerated plume. During the acceleration, the plasma channel assumes curved shapes, which differ from a flat sheet shape. The curved geometry of PPT discharge channels makes the flat current sheet model used in the present electro-mechanical model be of inherent shortcomings. This paper proposes an 2D curved current sheet model to improve the PPT electro-mechanical model, by referring to the curved morphology of PPT discharge plasma channels. Fig.I shows the schematic of a typical PPT discharge circuit and the curved PPT discharge plasma channel that is indicated as the pink curve $\mathop {ab}\limits^ \wedge $ according to the curved thin current sheet model. Also in Fig.I a current element of the discharge channel is taken arbitrarily to display its instant velocity and the Ampere force element df exerted by the magnetic field induced by the PPT current circuit. The pink dashed curve cdsymbolizes the position of the current sheet at the moment dt later. From the 2D curved current sheet model on, according to the detail shown in Fig.I, the Ampere force on discharge plasma channels and corresponding kinetics can be deduced aiming final kinetic energy of discharge plasma channels. As a result, the relation between the kinetic energy and the inductance of PPT discharge circuit is obtained as expression: ${E_k} = {\int {_0^{{t_{end}}}i(t)} ^2}\frac{{d{L_{eq}}(t)}}{{dt}}dt$. To determine the inductance as a temporal function, an algorithm for the inductance is proposed that employs time-segment fitting of PPT discharge waveforms. Moreover, based on the temporal function of the inductance, PPT discharge waveforms can be simulated using the ODE45 solver of MATLAB with high fitting goodness. So far, a calculation scheme for the kinetic energy of PPT plumes and simulation code for PPT discharge waveforms are setup based on the improved electro-mechanical model. To verify the improved model and the corresponding calculation scheme, a PPT prototype is used via assessing its energy conversion efficiency. The results show that the model enables elucidating the low PPT electro-mechanical efficiency, which is attributed to the partition limitation of PPT energy to electromagnetic acceleration process. Accordingly, a possible exploration routine for elevating PPT electro-mechanical efficiency is suggested.
  • [1]

    Wu Z W, Huang T K, Liu X Y, Ling W Y L, Wang N F, Ji L C 2020 Plasma Science and Technology 22 094014

    [2]

    Northway P 2020Ph.D. Dissertation (Washington: University of Washington)

    [3]

    Lev D, Myers R M, Lemmer K M, Kolbeck J, Koizumi H, Polzin K 2019 Acta Astronautica 159 213

    [4]

    Wu J J, Hu Z J, Zhang Y, He Z C, Ou Y, Zheng P, Zhao Y Z, Li Y Q 2023J. Propul. Technol. 44 11(in Chinese) [吴建军, 胡泽君, 张宇, 何志成, 欧阳, 郑鹏, 赵元政, 李宇奇2023推进技术 44 11]

    [5]

    Molina-Cabrera P, Herdrich G, Lau M, Fausolas S, Schönherr T, Komurasaki K 2011the 32nd International Electric Propulsion ConferenceWiesbaden, September 11–15, 2011 p1

    [6]

    Spanjers G, McFall K, Gulczinski F, Spores R 199632nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and ExhibitLake Buena Vista, July 1-3, 19962723

    [7]

    Koizumi H, Noji R, Komurasaki K, Arakawa Y 2007 Physics of Plasmas14 033506

    [8]

    Gomez E W, Saravia M M, Castelló W B, Elaskar S 20228th INTERNATIONAL CONFERENCE ON SPACE PROPULSION ESTORIL, May 9-13, 202200203

    [9]

    Antropov N, Diakonov G, Orlov M, Popov G, Yakovlev V 2003 28th International Electric Propulsion Conference PaperToulouse, March 17-21200303

    [10]

    Schönherr T, Nawaz A, Herdrich G, Röser H-P, Auweter-Kurtz M 2009 Journal of Propulsion and Power 25 380

    [11]

    Palumbo D J, Guman W J 1976 Journal of Spacecraft and Rockets 13 163

    [12]

    Ling W Y L, Zhang S, Fu H, Huang M, Quansah J, Liu X, Wang N 2020 Chinese Journal of Aeronautics 33 2999

    [13]

    Ou Y, Wu J, Du X, Zhang H, He Z 2019 Vacuum 165 163

    [14]

    Spanjers G G, Lotspeich J S, McFall K A, Spores R A 1998 Journal of Propulsion and Power 14 554

    [15]

    Schönherr T, Komurasaki K, Herdrich G 2013 Journal of Propulsion and Power 29 1478

    [16]

    Zeng L, Wu Z, Sun G, Huang T, Xie K, Wang N 2019 Acta Astronautica 160 317

    [17]

    Nawaz A, Albertoni R, Auweter-Kurtz M 2010 Acta Astronautica 67 440

    [18]

    Wu Z, Sun G, Huang T, Liu X, Xie K, Wang N 2018 AIAA Journal 56 3024

    [19]

    Jahn R G 1968Physics of electric propulsion (New York: McGraw-Hill) 263

    [20]

    Turchi P, Mikellides P 199531st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and ExhibitSan Diego, July 10-12, 19951

    [21]

    Gatsonis N A, Hastings D E 1992 Journal of Geophysical Research: Space Physics 97 14989

    [22]

    Vondra R J, Thomassen K, Solbes A 1970 Journal of Spacecraft and Rockets 7 1402

    [23]

    Wei R H 1982 Chinese Journal of Space Science 2 319(in Chinese) [魏荣华 1982空间科学学报 2 319]

    [24]

    Laperriere D, Gatsonis N, Demetriou M 200541st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and ExhibitTucson, July 10-13, 20054077

    [25]

    Gatsonis N, Demetriou M 200440st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and ExhibitFlorida, July 11-14, 20043464

    [26]

    Laperriere D D 2005 M.S. Dissertation(Massachusetts: Worcester Polytechnic Institute)

    [27]

    Ou Y, Wu J, Zhang Y, Li J, Tan S 2018 Energies 11 1

    [28]

    Zhang H, Wu J, Zhang D, Zhang R, He Z 2013 Acta Phys. Sin.62210202(in Chinese)[张华, 吴建军, 张代贤, 张锐, 何振2013物理学报 62 210202]

    [29]

    Mikellides Y G 1999Theoretical modeling and optimization of ablation-fed pulsed plasma thrusters (The Ohio State University)

    [30]

    Mikellides P G, Henrikson E M, Rajagopalan S S 2019 Journal of Propulsion and Power 35 811

    [31]

    Keidar M, Boyd I D, Beilis I I 2003 Journal of Propulsion and Power 19 424

    [32]

    Keidar M, Boyd I 200238st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and ExhibitIndianapolis, July 7-10, 20024275

    [33]

    Yang L, Huang Y, Tang H, Liu X 201534th International Electric Propulsion Conference and 6th Nano-satellite SymposiumHyogo-Kobe, July 4– 10, 20151

    [34]

    Yang L, Liu X-y, Wu Z-w, Wang N-f 201147th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & ExhibitCalifornia, July 31- August 032011-6077

    [35]

    Riazantsev A, Jakubczak M, Kurzyna J 202438th International Electric Propulsion ConferenceToulouse, June 23-28, 20241

    [36]

    Schönherr T, Nawaz A, Lau M, Petkow D, Herdrich G 2010 Trans. JSASS Aerospace Tech. Japan8 Tb_11

    [37]

    Wang Y-N, Ren L-Y, Ding W-D, Sun A-B, Geng J-Y 2021 Acta Phys. Sin. 70 235204(in Chinese)[王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越2021物理学报 70 235204]

    [38]

    Wang S M, Tian L C, Zhang J L, Zhang T P, Feng W W, Chen W X, Gao J 2017Chinese Space Science and Technology 37 24(in Chinese) [王尚民, 田立成, 张家良, 张天平, 冯玮玮, 陈新伟, 高军2017中国空间科学技术 37 24]

  • [1] 张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰. 辅助放电下刷状空气等离子体羽的放电特性和参数诊断. 物理学报, doi: 10.7498/aps.73.20231946
    [2] 牛中国, 许相辉, 王建锋, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验. 物理学报, doi: 10.7498/aps.71.20211425
    [3] 杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英. 大气压氩气刷形等离子体羽的特性研究. 物理学报, doi: 10.7498/aps.70.20202091
    [4] 牛中国, 许相辉, 王建峰, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验研究. 物理学报, doi: 10.7498/aps.70.20211425
    [5] 王亚楠, 任林渊, 丁卫东, 孙安邦, 耿金越. 腔体结构参数对毛细管放电型脉冲等离子体推力器放电特性的影响. 物理学报, doi: 10.7498/aps.70.20211198
    [6] 刘辉, 蒋文嘉, 宁中喜, 崔凯, 曾明, 曹希峰, 于达仁. 使用不同工质的会切磁场等离子体推力器. 物理学报, doi: 10.7498/aps.67.20180366
    [7] 董伟, 王志斌. 改进型混合表面等离子体微腔激光器的研究. 物理学报, doi: 10.7498/aps.67.20180242
    [8] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用. 物理学报, doi: 10.7498/aps.66.134205
    [9] 成玉国, 夏广庆. 感应式脉冲推力器中等离子体加速数值研究. 物理学报, doi: 10.7498/aps.66.075204
    [10] 兰峰, 高喜, 亓丽梅. 基于频率选择表面的双层改进型互补结构太赫兹带通滤波器研究. 物理学报, doi: 10.7498/aps.63.104209
    [11] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, doi: 10.7498/aps.63.010502
    [12] 张锐, 张代贤, 张帆, 何振, 吴建军. 脉冲等离子体推力器羽流沉积薄膜的结构与光学性质研究. 物理学报, doi: 10.7498/aps.62.025207
    [13] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型. 物理学报, doi: 10.7498/aps.62.210202
    [14] 耿少飞, 唐德礼, 邱孝明, 聂军伟, 于毅军. 霍尔漂移对阳极层霍尔等离子体加速器电离效率的影响. 物理学报, doi: 10.7498/aps.61.075210
    [15] 文锦辉, 刘俊, 张慧, 陈佳龙, 黄梓柱, 焦中兴, 赖天树. 改进型零附加相位光谱相位相干电场重构系统对啁啾脉冲的测量. 物理学报, doi: 10.7498/aps.59.370
    [16] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, doi: 10.7498/aps.59.8701
    [17] 陶卫东, 王 标. 一种改进型菲涅尔棱体的设计与分析. 物理学报, doi: 10.7498/aps.55.1126
    [18] 狄小莲, 辛 煜, 宁兆元. 平板型感应耦合等离子体源的线圈配置对功率耦合效率的影响. 物理学报, doi: 10.7498/aps.55.5311
    [19] 郑志远, 鲁 欣, 张 杰, 郝作强, 远晓辉, 王兆华. 激光等离子体动量转换效率的实验研究. 物理学报, doi: 10.7498/aps.54.192
    [20] 杨 涓, 毛根旺, 何洪庆, 唐金兰, 宋 军, 苏纬仪. 微波等离子推力器真空中工作的电微波系统及其实验. 物理学报, doi: 10.7498/aps.53.4282
计量
  • 文章访问数:  86
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-10-08

/

返回文章
返回