搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进型混合表面等离子体微腔激光器的研究

董伟 王志斌

引用本文:
Citation:

改进型混合表面等离子体微腔激光器的研究

董伟, 王志斌

Improved hybrid plasmonic microcavity laser

Dong Wei, Wang Zhi-Bin
PDF
导出引用
  • 设计了一种拥有增益介质脊和空气间隙的改进型混合表面等离子体微腔激光器,并在微腔的两端面镀一层50 nm厚的银反射镜,有效地提高了纳米激光器的性能.基于COMSOL Multiphysics软件分别构建二维截面和三维立体模型,在1550 nm的工作波长下对该改进型结构的传输性能以及微腔性能进行分析.结果表明:该激光器具有显著的亚波长限制能力和很大的传输距离,最长距离可以达到1.29 mm.测试该激光器的微腔性能时,通过调整结构参数获得了高质量因子、低增益阈值以及深亚波长下的超小有效模式体积0.001092 μm3和超高的Purcell因子8.29×105.与先前结构对比,在结构参数统一时,所设计的结构具有更低的激光激射阈值和更强的微腔局域能力.所设计的改进型混合表面等离子体微腔激光器可以作为各种光子器件的基本构建模块,并可应用于传感、纳米聚焦和纳米激光等领域.
    In this paper, an improved hybrid surface plasmon nanolaser with a gain medium ridge and a layer of air gap is proposed. In order to achieve low propagation loss and sub-wavelength field confinement, a triangular air gap and a 50 nm microcavity end face silver mirror are adopted in this structure, and the combination of this particular triangular structure and silver mirror effectively improves the performance of nano-laser. In this paper, we numerically simulate the waveguide by using the finite-element method. The COMSOL multiphysics software is a superior numerical simulation software to simulate the real physical phenomena based on the finite element method. On the basic of the COMSOL multiphysics software, a two-dimensional cross-section model and a three-dimensional model are built, the transmission performance and microcavity performance of the improved structure are analyzed in detail at a working wavelength of 1550 nm. Some quantities including the electric field distribution, transmission length, normalized mode field area, average energy density, foundation modal volume, quality factor of the structure, threshold gain, quality factor, effective modal volume, and Purcell factor are considered here which are dependent on the dielectric constant and geometrical parameters. The results indicate that on a two-dimensional scale, the contradiction between transmission loss and transmission distance can be effectively solved by the guidance of Fom value, and the IHPM laser structure with optimal transmission characteristics is obtained under the guidance of quality factor and foundation modal volume. A deep sub-wavelength constraint on light is achieved:the propagation length of the electromagnetic mode reaches a millimeter level and the longest distance can reach 1.29 mm. When testing the microcavity performance of the laser separately on a two-dimensional scale and three-dimensional scale, the high quality factor, low gain threshold, ultra-small effective mode volume of 0.001092 μm3 and ultra-high Purcell factor of 8.29×105 are obtained by adjusting the structural parameters and plating a 50 nm-thick silver layer on the end face of the laser microcavity. Compared with the previous structure without air gaps, the designed structure has a low laser lasing threshold and strong micro-cavity local capability when these two structural parameters are unified. The designed hybrid surface plasmon nanolaser may serve as a fundamental building block for various functional photonic components and can have applications such as in sensing, nanofocusing, and nanolasing.
      通信作者: 王志斌, ioe@ysu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:61107039)、河北省自然科学基金青年基金(批准号:F2012203202)和河北省百人计划项目(批准号:4570018)资助的课题.
      Corresponding author: Wang Zhi-Bin, ioe@ysu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61107039), the Natural Science Foundation of Hebei Province, China (Grant No. F2012203202), and the "100 Talents Project" of Hebei Province, China (Grant No. 4570018).
    [1]

    Han Q Y, Tang J C, Zhang S, Wang C, Ma H Q, Yu L, Jiao R Z (in Chinese) [韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍 2012 物理学报 61 135202]

    [2]

    Zhang Y, Zhang Z 2016 Plasmonics 12 1

    [3]

    Wang M S, Zhao C L, Miao X Y, Zhao Y H, Rufo J, Liu Y J, Huang T J, Zheng Y B 2015 Small (Germany:Weinheim an der Bergstrasse) 11 4422

    [4]

    O'Dell D, Serey X, Erickson D 2014 Appl. Phys. Lett. 104 043112

    [5]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [6]

    Berini P 2009 Adv. Opt. Photon. News 1 484

    [7]

    Ly-Gagnon D S, Kocabas S E, Miller D A B 2008 IEEE J. Sel. Top. Quantum Electron. 14 1473

    [8]

    Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q 2012 Nano Lett. 12 5784

    [9]

    Bian Y, Zheng Z, Zhao X, Liu L, Liu J, Zhu J, Zhou T 2013 Opt. Commun. 287 245

    [10]

    Avrutsky I, Soref R, Buchwald W 2010 Opt. Express 18 348

    [11]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496.

    [12]

    Chang S W, Chuang S L 2008 IEEE 2008 International Nano-Optoelectronics Workshop (i-Now) Japan, Tokyo, August 2-15, 2008 p195

    [13]

    Zhang Z G 2015 M. S. Dissertation (Qinhuangdao:Yanshan University) (in Chinese) [张振国 2015 硕士学位论文 (秦皇岛:燕山大学)]

    [14]

    Purcell E M 1995 Phys. Rev. 69 11

    [15]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal1 G, Zhang X 2009 Nature 461 629

    [16]

    Wei W 2015 M. S. Dissertation (Beijing:Beijing University of Posts and Telecommunications) (in Chinese) [魏巍 2015 博士学位论文 (北京:北京邮电大学)]

    [17]

    Li S X, Bai Z C, Huang Z, Zhang X, Qin S J, Mao W X 2012 Acta Phys. Sin. 61 115201 (in Chinese) [李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪 2012 物理学报 61 115201]

    [18]

    Li Q, Yu B Q, Li Z F, Wang X F, Zhang Z C, Pan L F 2017 Chin. Phys. B 26 085202

    [19]

    Zou C L, Sun F W, Xiao Y F, Dong C H, Chen X D, Cui J M, Gong Q, Han Z F, Guo G C 2010 Appl. Phys. Lett. 97 183102

    [20]

    Zhang B, Bian Y, Ren L, Guo F, Tang S Y, Mao Z, Liu X, Sun J J, Gong J Y, Guo X S, Huang T J 2017 Sci. Rep. 7 40479

    [21]

    Huang H, Zhao Q, Hong K, Xu Q, Huang X 2014 Physica E 57 113

    [22]

    Tian J, Sun M 2016 Eur. Phys. J. D 70 4

    [23]

    Piao R Q 2016 M. S. Dissertation (Qinhuangdao:Yanshan University) (in Chinese) [朴瑞琦 2016 硕士学位论文 (秦皇岛:燕山大学)]

    [24]

    Dai D, Shi Y, He S, Wosinski L, Thylen L 2011 Opt. Express 19 12925

    [25]

    Gamzatov A G, Batdalov A B, Kamilov I K, Kaul A R, Babushkina N A 2013 Appl. Phys. Lett. 102 032404

    [26]

    Chu H S, Bai P, Li E P, Hoefer W R J 2011 Plasmonics 6 591

    [27]

    Zhu L, Zhao Y 2010 J. Opt. Soc. Am. B 27 1260

    [28]

    Liu J T, Xu B Z, Zhang J, Cai L K, Song G F 2012 Chin. Phys. B 21 107303

    [29]

    Cheng P J, Weng C Y, Chang S W, Lin T R, Tien C H 2013 Opt. Express 21 13479

    [30]

    Wei B, Sheng X Z 2007 The Principle and Application of the Laser (Chongqing:Chongqing University Press) pp116-120 (in Chinese) [魏彪, 盛新志 2007激光原理(重庆:重庆大学出版社) 第116–120页]

    [31]

    Sun W Z 2016 M. S. Dissertation (Haerbin:Harbin Institute of Technology) (in Chinese) [孙文钊 2016 硕士学位论文 (哈尔滨:哈尔滨工业大学)]

    [32]

    Chou B T, Chou Y H, Chiang C K, Wu Y M 2015 IEEE J. Sel. Top. Quantum Electron. 21 6

    [33]

    Wei W, Xin Y, Xia Z 2016 Sci. Rep. 6 33063

    [34]

    Lu Q, Shu F J, Zou C L 2013 Opt. Lett. 38 5311

  • [1]

    Han Q Y, Tang J C, Zhang S, Wang C, Ma H Q, Yu L, Jiao R Z (in Chinese) [韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍 2012 物理学报 61 135202]

    [2]

    Zhang Y, Zhang Z 2016 Plasmonics 12 1

    [3]

    Wang M S, Zhao C L, Miao X Y, Zhao Y H, Rufo J, Liu Y J, Huang T J, Zheng Y B 2015 Small (Germany:Weinheim an der Bergstrasse) 11 4422

    [4]

    O'Dell D, Serey X, Erickson D 2014 Appl. Phys. Lett. 104 043112

    [5]

    Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E, Requicha A A G 2003 Nat. Mater. 2 229

    [6]

    Berini P 2009 Adv. Opt. Photon. News 1 484

    [7]

    Ly-Gagnon D S, Kocabas S E, Miller D A B 2008 IEEE J. Sel. Top. Quantum Electron. 14 1473

    [8]

    Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q 2012 Nano Lett. 12 5784

    [9]

    Bian Y, Zheng Z, Zhao X, Liu L, Liu J, Zhu J, Zhou T 2013 Opt. Commun. 287 245

    [10]

    Avrutsky I, Soref R, Buchwald W 2010 Opt. Express 18 348

    [11]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496.

    [12]

    Chang S W, Chuang S L 2008 IEEE 2008 International Nano-Optoelectronics Workshop (i-Now) Japan, Tokyo, August 2-15, 2008 p195

    [13]

    Zhang Z G 2015 M. S. Dissertation (Qinhuangdao:Yanshan University) (in Chinese) [张振国 2015 硕士学位论文 (秦皇岛:燕山大学)]

    [14]

    Purcell E M 1995 Phys. Rev. 69 11

    [15]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal1 G, Zhang X 2009 Nature 461 629

    [16]

    Wei W 2015 M. S. Dissertation (Beijing:Beijing University of Posts and Telecommunications) (in Chinese) [魏巍 2015 博士学位论文 (北京:北京邮电大学)]

    [17]

    Li S X, Bai Z C, Huang Z, Zhang X, Qin S J, Mao W X 2012 Acta Phys. Sin. 61 115201 (in Chinese) [李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪 2012 物理学报 61 115201]

    [18]

    Li Q, Yu B Q, Li Z F, Wang X F, Zhang Z C, Pan L F 2017 Chin. Phys. B 26 085202

    [19]

    Zou C L, Sun F W, Xiao Y F, Dong C H, Chen X D, Cui J M, Gong Q, Han Z F, Guo G C 2010 Appl. Phys. Lett. 97 183102

    [20]

    Zhang B, Bian Y, Ren L, Guo F, Tang S Y, Mao Z, Liu X, Sun J J, Gong J Y, Guo X S, Huang T J 2017 Sci. Rep. 7 40479

    [21]

    Huang H, Zhao Q, Hong K, Xu Q, Huang X 2014 Physica E 57 113

    [22]

    Tian J, Sun M 2016 Eur. Phys. J. D 70 4

    [23]

    Piao R Q 2016 M. S. Dissertation (Qinhuangdao:Yanshan University) (in Chinese) [朴瑞琦 2016 硕士学位论文 (秦皇岛:燕山大学)]

    [24]

    Dai D, Shi Y, He S, Wosinski L, Thylen L 2011 Opt. Express 19 12925

    [25]

    Gamzatov A G, Batdalov A B, Kamilov I K, Kaul A R, Babushkina N A 2013 Appl. Phys. Lett. 102 032404

    [26]

    Chu H S, Bai P, Li E P, Hoefer W R J 2011 Plasmonics 6 591

    [27]

    Zhu L, Zhao Y 2010 J. Opt. Soc. Am. B 27 1260

    [28]

    Liu J T, Xu B Z, Zhang J, Cai L K, Song G F 2012 Chin. Phys. B 21 107303

    [29]

    Cheng P J, Weng C Y, Chang S W, Lin T R, Tien C H 2013 Opt. Express 21 13479

    [30]

    Wei B, Sheng X Z 2007 The Principle and Application of the Laser (Chongqing:Chongqing University Press) pp116-120 (in Chinese) [魏彪, 盛新志 2007激光原理(重庆:重庆大学出版社) 第116–120页]

    [31]

    Sun W Z 2016 M. S. Dissertation (Haerbin:Harbin Institute of Technology) (in Chinese) [孙文钊 2016 硕士学位论文 (哈尔滨:哈尔滨工业大学)]

    [32]

    Chou B T, Chou Y H, Chiang C K, Wu Y M 2015 IEEE J. Sel. Top. Quantum Electron. 21 6

    [33]

    Wei W, Xin Y, Xia Z 2016 Sci. Rep. 6 33063

    [34]

    Lu Q, Shu F J, Zou C L 2013 Opt. Lett. 38 5311

  • [1] 高荣, 杨亚楠, 湛晨翌, 张宗祯, 邓宜, 王子潇, 梁坤, 冯素春. 基于双频泵浦正常色散碳化硅微环谐振腔的光频率梳设计. 物理学报, 2024, 73(3): 034203. doi: 10.7498/aps.73.20231442
    [2] 方靖岳, 文之豪, 朱海碧涛, 李欣幸, 邓联文. 基于集成法布里-珀罗微腔阵列的16通道快照式多光谱成像. 物理学报, 2024, 73(7): 074205. doi: 10.7498/aps.73.20231775
    [3] 穆鹏华, 陈昊, 刘国鹏, 胡国四. 级联耦合纳米激光器混沌时延特征消除和带宽增强. 物理学报, 2024, 73(10): 104204. doi: 10.7498/aps.73.20231643
    [4] 徐琦, 孙小伟, 宋婷, 温晓东, 刘禧萱, 王羿文, 刘子江. 不同缺陷态下具有高光力耦合率的新型一维光力晶体纳米梁. 物理学报, 2021, 70(22): 224210. doi: 10.7498/aps.70.20210925
    [5] 曹明鹏, 吴晓鹏, 管宏山, 单光宝, 周斌, 杨力宏, 杨银堂. 基于对偶单元法的三维集成微系统电热耦合分析. 物理学报, 2021, 70(7): 074401. doi: 10.7498/aps.70.20201628
    [6] 张柏富, 朱康, 武恒, 胡海峰, 沈哲, 许吉. 双凹型谐振腔结构的金属半导体纳米激光器的数值仿真. 物理学报, 2019, 68(22): 224201. doi: 10.7498/aps.68.20190972
    [7] 赵运进, 田锰, 黄勇刚, 王小云, 杨红, 米贤武. 基于有限元法的光子并矢格林函数重整化及其在自发辐射率和能级移动研究中的应用. 物理学报, 2018, 67(19): 193102. doi: 10.7498/aps.67.20180898
    [8] 管义钧, 孙宏祥, 袁寿其, 葛勇, 夏建平. 近表面层黏性模量梯度变化的复合平板中激光热弹激发声表面波的传播特性. 物理学报, 2016, 65(22): 224201. doi: 10.7498/aps.65.224201
    [9] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [10] 舒方杰. 微盘腔垂直耦合器特性的拓展分析. 物理学报, 2013, 62(6): 064212. doi: 10.7498/aps.62.064212
    [11] 黄洪, 赵青, 焦蛟, 梁高峰, 黄小平. 深亚波长约束的表面等离子体纳米激光器研究. 物理学报, 2013, 62(13): 135201. doi: 10.7498/aps.62.135201
    [12] 于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬. 新型圆角式高压碳化钨硬质合金顶锤的有限元分析. 物理学报, 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
    [13] 袁玲, 孙凯华, 崔一平, 沈中华, 倪晓武. 由于表面粗糙引起的激光声表面波色散的实验和理论研究. 物理学报, 2012, 61(1): 014210. doi: 10.7498/aps.61.014210
    [14] 唐田田, 王德华, 黄凯云. 氢负离子在微腔中的光剥离研究. 物理学报, 2011, 60(5): 053203. doi: 10.7498/aps.60.053203
    [15] 韩奇钢, 马红安, 肖宏宇, 李瑞, 张聪, 李战厂, 田宇, 贾晓鹏. 基于有限元法分析宝石级金刚石的合成腔体温度场. 物理学报, 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [16] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析. 物理学报, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [17] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力. 物理学报, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [18] 徐登. 有机盐掺杂聚合物微腔的受激发射特性研究(已撤稿). 物理学报, 2009, 58(4): 2781-2784. doi: 10.7498/aps.58.2781
    [19] 袁 玲, 沈中华, 倪晓武, 陆 建. 激光在近表面弹性性质梯度变化的材料中激发超声波的数值分析. 物理学报, 2007, 56(12): 7058-7063. doi: 10.7498/aps.56.7058
    [20] 吕 明, 徐少辉, 张松涛, 何 钧, 熊祖洪, 邓振波, 丁训民. 基于多孔硅分布Bragg反射镜的有机微腔的光学性质. 物理学报, 2000, 49(10): 2083-2088. doi: 10.7498/aps.49.2083
计量
  • 文章访问数:  5640
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-31
  • 修回日期:  2018-07-23
  • 刊出日期:  2018-10-05

/

返回文章
返回