搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

托卡马克离子温度梯度湍流输运同位素定标修正中杂质的影响

沈勇 董家齐 徐红兵

引用本文:
Citation:

托卡马克离子温度梯度湍流输运同位素定标修正中杂质的影响

沈勇, 董家齐, 徐红兵

Role of impurities in modifying isotope scaling law of ion temperature gradient turbulence driven transport in tokamak

Shen Yong, Dong Jia-Qi, Xu Hong-Bing
PDF
导出引用
  • 托卡马克实验发现,在不同参数条件下,等离子体能量约束经验定标律会有或大或小的修正.为解释这种修正现象发生的原因,应用回旋动理学方法,对含重(钨)杂质等离子体离子温度梯度(ITG)(包括杂质模)湍流输运的同位素效应进行了数值研究.结果表明钨杂质效应极大地修改了同位素定标律和有效电荷效应.随着杂质离子电荷数Z和电荷集中度fz的变化,同位素定标律在较大范围内变化.ITG模最大增长率定标大约为Mi-0.48-0.12,杂质模的定标为Mi-0.46-0.3,其中,Mi表示主离子质量数.在ITG模湍流中,有效电荷数越大,关于Mi的拟合指数偏离-0.5越远,表现为同位素质量依赖减弱.在两种模中,杂质电荷集中度越大,同位素质量依赖越弱.研究了杂质效应使定标关系发生偏离的原因,证实杂质种类、杂质电荷数和杂质浓度的不同,是引起同位素质量依赖发生改变的重要原因.结果证实并解释了不同参数条件下托卡马克同位素定标的差异性.研究成果可以为ITER实验安排及杂质相关输运实验中选择装置材料、工作气体和设置其他参数提供理论参考.
    Tokamak experiments show that the plasma empirical energy confinement scaling law varies with plasma ion mass (Ai) in a certain range under conditions of different plasma parameters or different devices. In order to understand such a modification of the empirical energy confinement scaling law, the isotope mass dependence of ion temperature gradient (ITG, including impurity modes) turbulence driven transport in the presence of tungsten impurity ions in tokamak plasma is studied by employing the gyrokinetic theory. The effect of heavy (tungsten) impurity ions on ITG and impurity mode is revealed to modify significantly the isotope mass dependence and effective charge effect. As the charge number of impurity ions (Z) or impurity charge concentration (fz) changes, the theoretical scaling law of ITG turbulence transport varies substantially in a relatively large range. The maximum growth rate of ITG mode scales as Mi-0.48 -0.12, whilst that of impurity mode scales as Mi-0.46 -0.3. Here, Mi is the mass number of primary ion in the plasma. In both cases the fitting index with Mi deviates further away from -0.5 when impurity charge concentration fz increases. The isotope mass dependence of ITG turbulence gradually weakens when the effective charge number Zeff increases. The isotope mass dependence of impurity mode turbulence also weakens with Zeff increasing for the same impurity ion charge number (Z). In contrast, the isotope mass dependence gradually strengthens with effective charge number Zeff increasing for the same impurity charge concentration (fz). On average, the maximum growth rates of impurity mode scale roughly as max~Mi-0.35Zeff1.5 and max~Mi-0.4Zeff1, respectively, for Zeff 3 and Zeff 3. The reason for the deviation of isotope scaling law from the normal case is investigated deliberately, and it is demonstrated that the isotope scaling index deviates from -0.5 more or less due to the fact that the impurity species, charge number and impurity concentrations vary in a certain range. These results demonstrate that it is impossible to deduce a unique isotope scaling law due to the variety of micro-instabilities and various plasma parameter regimes in tokamak plasma, which is consistent with the experimental observations. These results may contribute to the transport study involving heavy (tungsten) impurity ions in ITER discharge scenario investigation.
      通信作者: 沈勇, sheny@swip.ac.cn
    • 基金项目: 国家重点研发项目(批准号:2017YFE0300405)、国家自然科学基金(批准号:11475057)和四川省科技项目(批准号:2016JY0196)资助的课题.
      Corresponding author: Shen Yong, sheny@swip.ac.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFE0300405), the National Natural Science Foundation of China (Grant No. 11475057), and the Science and Technology Program of Sichuan Province, China (Grant No. 2016JY0196).
    [1]

    Sokolov V, Sen A K 2002 Phys. Rev. Lett. 89 095001

    [2]

    Lorenzini R, Agostini M, Auriemma F, Carraro L, de Masi G, Fassina A, Franz P, Gobbin M, Innocente P, Puiatti M E, Scarin P, Zaniol B, Zuin M 2015 Nucl. Fusion 55 043012

    [3]

    Urano H, Takizuka T, Aiba N, Kikuchi M, Nakano T, Fujita T, Oyama N, Kamada Y, Hayashi N, the JT-6 Team 2013 Nucl. Fusion 53 083003

    [4]

    Sokolov V, Sen A K 2003 Phys. Plasmas 10 3174

    [5]

    Bessenrodt-Weberpals M, Wagner F, ASDEX Team 1993 Nucl. Fusion 33 1205

    [6]

    Yushmanov P N, Takizuka T, Riedel K S, Kardaun O J W F, Cordey J G, Kaye S M, Post D E 1990 Nucl. Fusion 30 1999

    [7]

    Goldston R 1984 Plasma Phys. Controll. Fusion 26 87

    [8]

    Hugill J, Sheffiled J 1978 Nucl. Fusion 18 15

    [9]

    Jacquinot J, the JET Team 1999 Plasma Phys. Control. Fusion 41 A13

    [10]

    ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Databases, ITER Physics Basic Editors 1999 Nucl. Fusion 39 2175

    [11]

    Schneider P A, Bustos A, Hennequin P, Ryter F, Bernert M, Cavedon M, Dunne M G, Fischer R, Grler T, Happel T, Igochine V, Kurzan B, Lebschy A, McDermott R M, Morel P, Willensdorfer M, the ASDEX Upgrade Team, the EUROfusion MST1 Team 2017 Nucl. Fusion 57 066003

    [12]

    Du H L, Sang C F, Wang L, Sun J Z, Liu S C, Wang H Q, Zhang L, Guo H Y, Wang D Z 2013 Acta Phys. Sin. 62 245206 (in Chinese) [杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真 2013 物理学报 62 245206]

    [13]

    Itoh S I, Itoh K 2012 Chin. Phys. B 21 095201

    [14]

    Li Q L, Zheng Y Z, Cheng F Y, Deng X B, Deng D S, You P L, Liu G A, Chen X D 2001 Acta Phys. Sin. 50 507 (in Chinese) [李齐良, 郑永真, 程发银, 邓小波, 邓冬生, 游佩林, 刘贵昂, 陈向东 2001 物理学报 50 507]

    [15]

    Pusztai I, Mollen A, Fulop T, Candy J 2013 Plasma Phys. Control. Fusion 55 074012

    [16]

    Dong J Q, Horton W, Dorland W 1994 Phys. Plasmas 1 3635

    [17]

    Tokar M Z, Kalupin D, Unterberg B 2004 Phys. Rev. Lett. 92 215001

    [18]

    Connor J W, Pogutse O P 2001 Plasma Phys. Control. Fusion 43 155

    [19]

    Shen Y, Dong J Q, Sun A P, Qu H P, Lu G M, He Z X, He H D, Wang L F 2016 Plasma Phys. Control. Fusion 58 045028

    [20]

    Shen Y, Dong J Q, Han M K, Sun A P, Shi Z B 2018 Nucl. Fusion 58 076007

    [21]

    Lu H L, Wang S J 2009 Acta Phys. Sin. 58 354 (in Chinese) [陆赫林, 王顺金 2009 物理学报 58 354]

    [22]

    Zhang K, Cui Z Y, Sun P, Dong C F, Deng W, Dong Y B, Song S D, Jiang M, Li Y G, Lu P, Yang Q W 2016 Chin. Phys. B 25 065202

    [23]

    Zhou Q, Wang B N, Wu Z W, Huang J 2005 Chin. Phys. B 14 2539

    [24]

    Cui X W, Cui Z Y, Feng B B, Pan Y D, Zhou H Y, Sun P, Fu B Z, Lu P, Dong Y B, Gao J M, Song S D, Yang Q W 2013 Chin. Phys. B 22 125201

    [25]

    Pusztai I, Candy J, Gohil P 2011 Phys. Plasmas 18 122501

    [26]

    Guo W X, Wang L, Zhuang G 2016 Phys. Plasmas 23 112301

    [27]

    Xu W, Wan B N, Xie J K 2003 Acta Phys. Sin. 52 1970 (in Chinese) [徐伟, 万宝年, 谢纪康 2003 物理学报 52 1970]

    [28]

    Zhang H, Wen S L, Pan M, Huang Z, Zhao Y, Liu X, Chen J M 2016 Chin. Phys. B 25 056102

    [29]

    Coppi B 1991 Proceedings of the 13th International Conference in Plasma Physics and Controlled Nuclear Fusion Research Washington, USA, July 3-7, 1990 p413

    [30]

    Dominguez R R 1991 Nucl. Fusion 31 2063

    [31]

    Chen L, Tsai S T 1983 Plasma Phys. 25 349

  • [1]

    Sokolov V, Sen A K 2002 Phys. Rev. Lett. 89 095001

    [2]

    Lorenzini R, Agostini M, Auriemma F, Carraro L, de Masi G, Fassina A, Franz P, Gobbin M, Innocente P, Puiatti M E, Scarin P, Zaniol B, Zuin M 2015 Nucl. Fusion 55 043012

    [3]

    Urano H, Takizuka T, Aiba N, Kikuchi M, Nakano T, Fujita T, Oyama N, Kamada Y, Hayashi N, the JT-6 Team 2013 Nucl. Fusion 53 083003

    [4]

    Sokolov V, Sen A K 2003 Phys. Plasmas 10 3174

    [5]

    Bessenrodt-Weberpals M, Wagner F, ASDEX Team 1993 Nucl. Fusion 33 1205

    [6]

    Yushmanov P N, Takizuka T, Riedel K S, Kardaun O J W F, Cordey J G, Kaye S M, Post D E 1990 Nucl. Fusion 30 1999

    [7]

    Goldston R 1984 Plasma Phys. Controll. Fusion 26 87

    [8]

    Hugill J, Sheffiled J 1978 Nucl. Fusion 18 15

    [9]

    Jacquinot J, the JET Team 1999 Plasma Phys. Control. Fusion 41 A13

    [10]

    ITER Physics Expert Groups on Confinement and Transport and Confinement Modelling and Databases, ITER Physics Basic Editors 1999 Nucl. Fusion 39 2175

    [11]

    Schneider P A, Bustos A, Hennequin P, Ryter F, Bernert M, Cavedon M, Dunne M G, Fischer R, Grler T, Happel T, Igochine V, Kurzan B, Lebschy A, McDermott R M, Morel P, Willensdorfer M, the ASDEX Upgrade Team, the EUROfusion MST1 Team 2017 Nucl. Fusion 57 066003

    [12]

    Du H L, Sang C F, Wang L, Sun J Z, Liu S C, Wang H Q, Zhang L, Guo H Y, Wang D Z 2013 Acta Phys. Sin. 62 245206 (in Chinese) [杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真 2013 物理学报 62 245206]

    [13]

    Itoh S I, Itoh K 2012 Chin. Phys. B 21 095201

    [14]

    Li Q L, Zheng Y Z, Cheng F Y, Deng X B, Deng D S, You P L, Liu G A, Chen X D 2001 Acta Phys. Sin. 50 507 (in Chinese) [李齐良, 郑永真, 程发银, 邓小波, 邓冬生, 游佩林, 刘贵昂, 陈向东 2001 物理学报 50 507]

    [15]

    Pusztai I, Mollen A, Fulop T, Candy J 2013 Plasma Phys. Control. Fusion 55 074012

    [16]

    Dong J Q, Horton W, Dorland W 1994 Phys. Plasmas 1 3635

    [17]

    Tokar M Z, Kalupin D, Unterberg B 2004 Phys. Rev. Lett. 92 215001

    [18]

    Connor J W, Pogutse O P 2001 Plasma Phys. Control. Fusion 43 155

    [19]

    Shen Y, Dong J Q, Sun A P, Qu H P, Lu G M, He Z X, He H D, Wang L F 2016 Plasma Phys. Control. Fusion 58 045028

    [20]

    Shen Y, Dong J Q, Han M K, Sun A P, Shi Z B 2018 Nucl. Fusion 58 076007

    [21]

    Lu H L, Wang S J 2009 Acta Phys. Sin. 58 354 (in Chinese) [陆赫林, 王顺金 2009 物理学报 58 354]

    [22]

    Zhang K, Cui Z Y, Sun P, Dong C F, Deng W, Dong Y B, Song S D, Jiang M, Li Y G, Lu P, Yang Q W 2016 Chin. Phys. B 25 065202

    [23]

    Zhou Q, Wang B N, Wu Z W, Huang J 2005 Chin. Phys. B 14 2539

    [24]

    Cui X W, Cui Z Y, Feng B B, Pan Y D, Zhou H Y, Sun P, Fu B Z, Lu P, Dong Y B, Gao J M, Song S D, Yang Q W 2013 Chin. Phys. B 22 125201

    [25]

    Pusztai I, Candy J, Gohil P 2011 Phys. Plasmas 18 122501

    [26]

    Guo W X, Wang L, Zhuang G 2016 Phys. Plasmas 23 112301

    [27]

    Xu W, Wan B N, Xie J K 2003 Acta Phys. Sin. 52 1970 (in Chinese) [徐伟, 万宝年, 谢纪康 2003 物理学报 52 1970]

    [28]

    Zhang H, Wen S L, Pan M, Huang Z, Zhao Y, Liu X, Chen J M 2016 Chin. Phys. B 25 056102

    [29]

    Coppi B 1991 Proceedings of the 13th International Conference in Plasma Physics and Controlled Nuclear Fusion Research Washington, USA, July 3-7, 1990 p413

    [30]

    Dominguez R R 1991 Nucl. Fusion 31 2063

    [31]

    Chen L, Tsai S T 1983 Plasma Phys. 25 349

  • [1] 刘璇, 高腾, 解士杰. 有机半导体中极化子运动的同位素效应. 物理学报, 2020, 69(24): 246701. doi: 10.7498/aps.69.20200789
    [2] 杨晓荣, 王琼, 叶唐进, 土登次仁. 考虑对流和扩散两种动力学起源的连续时间随机行走模型. 物理学报, 2019, 68(13): 130501. doi: 10.7498/aps.68.20190088
    [3] 余庚华, 颜辉, 高当丽, 赵朋义, 刘鸿, 朱晓玲, 杨维. 相对论多组态相互作用方法计算Mg+离子同位素位移. 物理学报, 2018, 67(1): 013101. doi: 10.7498/aps.67.20171817
    [4] 李文涛, 于文涛, 姚明海. 采用量子含时波包方法研究H/D+Li2LiH/LiD+Li反应. 物理学报, 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [5] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江. 聚噻吩单链量子热输运的第一性原理研究. 物理学报, 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [6] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江, 岑超. 聚乙烯单链量子热输运的同位素效应. 物理学报, 2017, 66(11): 116501. doi: 10.7498/aps.66.116501
    [7] 刘宸, 孙宏祥, 袁寿其, 夏建平. 基于温度梯度分布的宽频带声聚焦效应. 物理学报, 2016, 65(4): 044303. doi: 10.7498/aps.65.044303
    [8] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志. 同位素效应对H+NH→N+H2反应的立体动力学性质的影响. 物理学报, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [9] 任桂明, 郑圆圆, 王丁, 王林, 谌晓洪, 王玲, 马敏, 刘华兵. 氢化氧化铝的同位素效应研究. 物理学报, 2014, 63(23): 233104. doi: 10.7498/aps.63.233104
    [10] 段志欣, 邱明辉, 姚翠霞. 采用量子波包方法和准经典轨线方法研究S(3P)+HD反应. 物理学报, 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [11] 杨波, 梅冬成. 非高斯噪声对惯性棘轮中粒子负迁移率的影响. 物理学报, 2013, 62(11): 110502. doi: 10.7498/aps.62.110502
    [12] 夏文泽, 于永江, 杨传路. 同位素取代和碰撞能对N(4S)+H2反应立体动力学性质的影响. 物理学报, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [13] 陆赫林, 陈忠勇, 李跃勋, 杨恺. 磁场剪切对离子温度梯度模带状流产生的影响. 物理学报, 2011, 60(8): 085202. doi: 10.7498/aps.60.085202
    [14] 许燕, 赵娟, 王军, 刘芳, 孟庆田. 碰撞能和同位素取代对H+BrF→HBr+F反应立体动力学影响的理论研究. 物理学报, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [15] 余春日, 汪荣凯, 张杰, 杨向东. He同位素原子与HBr分子碰撞的微分截面. 物理学报, 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [16] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型. 物理学报, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [17] 刘建业, 郭文军, 左 维, 李希国. 核子-核子碰撞截面对同位素标度参数α的同位旋效应. 物理学报, 2008, 57(9): 5458-5463. doi: 10.7498/aps.57.5458
    [18] 罗文浪, 阮 文, 张 莉, 谢安东, 朱正和. 氢同位素氚水T2O(X1A1)的解析势能函数. 物理学报, 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [19] 汪荣凯, 沈光先, 宋晓书, 令狐荣锋, 杨向东. He同位素对He-NO碰撞体系微分截面的影响. 物理学报, 2008, 57(7): 4138-4142. doi: 10.7498/aps.57.4138
    [20] 王同生, 叶为文, 马忠乾. 在Ne22照射U238核反应中观察到反常截面的金同位素. 物理学报, 1966, 22(6): 708-713. doi: 10.7498/aps.22.708
计量
  • 文章访问数:  2626
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-16
  • 修回日期:  2018-07-18
  • 刊出日期:  2018-10-05

托卡马克离子温度梯度湍流输运同位素定标修正中杂质的影响

  • 1. 核工业西南物理研究院, 成都 610041;
  • 2. 浙江大学聚变理论与模拟中心, 杭州 310013
  • 通信作者: 沈勇, sheny@swip.ac.cn
    基金项目: 国家重点研发项目(批准号:2017YFE0300405)、国家自然科学基金(批准号:11475057)和四川省科技项目(批准号:2016JY0196)资助的课题.

摘要: 托卡马克实验发现,在不同参数条件下,等离子体能量约束经验定标律会有或大或小的修正.为解释这种修正现象发生的原因,应用回旋动理学方法,对含重(钨)杂质等离子体离子温度梯度(ITG)(包括杂质模)湍流输运的同位素效应进行了数值研究.结果表明钨杂质效应极大地修改了同位素定标律和有效电荷效应.随着杂质离子电荷数Z和电荷集中度fz的变化,同位素定标律在较大范围内变化.ITG模最大增长率定标大约为Mi-0.48-0.12,杂质模的定标为Mi-0.46-0.3,其中,Mi表示主离子质量数.在ITG模湍流中,有效电荷数越大,关于Mi的拟合指数偏离-0.5越远,表现为同位素质量依赖减弱.在两种模中,杂质电荷集中度越大,同位素质量依赖越弱.研究了杂质效应使定标关系发生偏离的原因,证实杂质种类、杂质电荷数和杂质浓度的不同,是引起同位素质量依赖发生改变的重要原因.结果证实并解释了不同参数条件下托卡马克同位素定标的差异性.研究成果可以为ITER实验安排及杂质相关输运实验中选择装置材料、工作气体和设置其他参数提供理论参考.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回