搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子回旋共振同位素分离过程影响因素探究

郭凯 杨佳琦

郭凯, 杨佳琦. 离子回旋共振同位素分离过程影响因素探究. 物理学报. doi: 10.7498/aps.74.20241755
引用本文: 郭凯, 杨佳琦. 离子回旋共振同位素分离过程影响因素探究. 物理学报. doi: 10.7498/aps.74.20241755
GUO Kai, YANG Jiaqi. Exploration of influencing factors on the ICR Isotope separation process. Acta Phys. Sin.. doi: 10.7498/aps.74.20241755
Citation: GUO Kai, YANG Jiaqi. Exploration of influencing factors on the ICR Isotope separation process. Acta Phys. Sin.. doi: 10.7498/aps.74.20241755

离子回旋共振同位素分离过程影响因素探究

郭凯, 杨佳琦

Exploration of influencing factors on the ICR Isotope separation process

GUO Kai, YANG Jiaqi
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 离子回旋共振(Ion Cyclotron Resonance,ICR)方法是一种通过选择性加热目标离子实现分离效应的先进同位素分离方法。为确定各参数对ICR分离过程影响,开展了ICR同位素分离理论研究,基于单粒子模型方法对等离子体束流在稳恒磁场与交变电场组合场中的传输过程进行了数值模拟,对初始等离子体束流、共振加热区电磁场等影响分离效应的核心参数进行了分析。结果表明,共振区交变电场强度、射频天线波长、共振区尺寸、等离子体初始轴向能量及其分布对等离子体束流整体加热效果均存在明显影响;共振区磁感应强度、射频天线波长、等离子体初始轴向能量分布对加热过程的选择性存在直接影响。所得结论对ICR分离装置参数的初步设计有一定借鉴价值。
    The ion cyclotron resonance (ICR) isotope separation method is an advanced electromagnetic separation method. The key process of this method is the transport of ions in an axial magnetic field. By injecting microwaves at the target ion cyclotron frequency, only the target ions could be heated so that the energy of target ions could be distinguished. Due to the advantages of high separation coefficient, multiple types of isotopes that can be separated, and large throughput, since 1980, countries such as the United States, Russia, and France had already built ICR isotope separation devices and conducted various isotope separation experiments. The main elements of an ICR separation device include three parts: a plasma source, a selective ion heating system, and an ion collector: the electron cyclotron resonance (ECR) ion source is the most popular plasma source, which generates the ions to be separated; the selective ion heating system is the key part of the separation device, mainly composed of a superconducting magnetic coil and a radio frequency (RF) antenna, which are used to provide a stable magnetic field and microwaves at the specific frequency to heating the target isotope ions, respectively; the ion collector is used to collect the ions after separation. To clarify the key process of the ICR separation method, the transport process of ions in the electromagnetic field inside the selective ion heating system is simulated, and the influences on the selective heating effects of core parameters, such as parameters of initial plasma beam and electromagnetic field inside the selective ion heating system, are discussed in detail. The numerical simulation model used in this paper is the single particle model, which ignores the interaction between ions and the induced electromagnetic field of the plasma beam. The simulation results show that the intensity of the alternating electric field in the selective ion heating system, the wavelength of the RF antenna, the size of the ion selective heating system, the initial axial energy of the plasma and its distribution all have a significant impact on the overall heating effect of the plasma beam. The magnetic induction intensity in the ion selective heating system, the wavelength of the RF antenna, and the initial axial energy distribution of the plasma have a direct impact on the selectivity of the heating process. Considering the limitations of the single particle model, further simulation will be conducted using a more accurate model. The design of the RF antenna and ECR ion source will also be considered in the further research.
      PACS:
      28.60.+s(Isotope separation and enrichment)
      52.50.Qt(Plasma heating by radio-frequency fields; ICR, ICP, helicons)
      28.41.Ak(Theory, design, and computerized simulation)
  • [1]

    Du D 2015Ph. D. Dissertation (Hengyang:University of South China)(in Chinese)[杜丹2015博士学位论文(衡阳:南华大学)]

    [2]

    Li J G, Wang B N 2011Nucl. Fusion. 51 09007

    [3]

    Bering E A, F.R. Chang-Diaz, Squire J P, Brukardt M, Glover T W, Bengtson R D, Jacobson V T, McCaskill G E, Cassady L 2008 Adv. Space Res. 42 192

    [4]

    Yang J, Mou H, Gen H, Wu X M 2023J. Propul. Technol. 44 2208095(in Chinese)[杨涓,牟浩,耿海,吴先明推进技术2023442208095]

    [5]

    Schmitt J P M. 1973Phys. Rev. Lett. 31 982

    [6]

    Dolgolenko D A, Muromkin Y A 2009Phys.-Usp. 52 345

    [7]

    Tracy J G, Aaron W S 1993Nucl. Instrum. Methods Phys. Res., Sect. A. 334 45

    [8]

    Stevenson N R, Bigelow T S, Tarallo F J 2003J. Radioanal. Nucl. Chem. 257 153

    [9]

    Louvet P, Compant A, Larousse B, Patris M 1994 Proceeding of 4th Workshop on Separation Phenomena in Liquids and Gases Beijing, China, Aug 21-25, 1994 p83

    [10]

    Dolgolenko D A, Muromkin Y A, Pashkovsky VG 2019Instrum. Exp. Tech. 62 798

    [11]

    Muromkin Y A. 2013J. Energy Power Eng. 7 306

    [12]

    Takao I, Ohmi K, Akira T Ken-ichi T, Tatsuya S, Noriyosu H, Naoto H, Tokushi S 2017J. Part. Accel. Soc. Jan. 14 15

    [13]

    Egle B, Asgari M, Bigelow T, Duckworth R, Goulding R, Burkhard E https://www.osti.gov/servlets/purl/1647749[2020-6-30]

    [14]

    Timofeev A V 2007Plasma Phys. Rep. 33 890

    [15]

    Gueroult R, Rax JM, Fisch NJ 2018J. Cleaner Prod. 182 1060

    [16]

    Potanin E P, Ustinov A V 2013Plasma Phys. Rep. 39 510

    [17]

    Potanin E P 2022Instrum. Exp. Tech. 65 766

    [18]

    Li D, Chen Y H, Ma J X, Yang W H 2006Plasma Physics (Beijing:Higher Education Press) pp14-19(in Chinese)[李定,陈银华,马锦秀杨维纮2006等离子体物理学(北京:高等教育出版社)第14-19页]

    [19]

    Berger J M. Newcomb W A. Dawson J M, Frieman E A, Kulsurd R M, Lenard A 1958Phys. Fluids. 1 301

    [20]

    Potanin E P 2005Tech. Phys. 50 698

    [21]

    Ohmi K, Inagaki T, Kichimi H, Takagi A, Tanaka K, Suzuki T, Shibata T, Fujii Y 2013Jan. J. Appl. Phys. 52 126401

    [22]

    Potanin E P 2006Tech. Phys. 51 1586

    [23]

    Baranov V U (translated by Wang L J)2004Isotopes Property, Preparation and Application(Beijing:Tsinghua University Press) p215(in Chinese)[巴朗诺夫V U著(王立军译)2004同位素性质、制取与应用(北京:清华大学出版社)第215页]

  • [1] 李鑫, 曾明, 刘辉, 宁中喜, 于达仁. 应用于电推进的碘工质电子回旋共振等离子体源. 物理学报, doi: 10.7498/aps.72.20230785
    [2] 孙延旭, 黄娟, 高伟, 常加峰, 张伟, 史唱, 李云鹤. EAST上中性束注入和离子回旋共振加热下快离子分布函数层析反演. 物理学报, doi: 10.7498/aps.72.20230846
    [3] 袁洪瑞, 刘涛, 朱天鑫, 刘云, 李响, 陈杨, 段传喜. SF6分子的10.6 μm高分辨射流冷却激光吸收光谱. 物理学报, doi: 10.7498/aps.72.20222285
    [4] 李业军, 郭静, 马俊平, 唐显, 李鑫, 闫冰. BCl3同位素分离中二聚体的浓度. 物理学报, doi: 10.7498/aps.71.20221517
    [5] 沈勇, 董家齐, 徐红兵. 托卡马克离子温度梯度湍流输运同位素定标修正中杂质的影响. 物理学报, doi: 10.7498/aps.67.20180703
    [6] 余庚华, 颜辉, 高当丽, 赵朋义, 刘鸿, 朱晓玲, 杨维. 相对论多组态相互作用方法计算Mg+离子同位素位移. 物理学报, doi: 10.7498/aps.67.20171817
    [7] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, doi: 10.7498/aps.60.043102
    [8] 高碧荣, 刘悦. 电子回旋共振等离子体密度均匀性的数值研究. 物理学报, doi: 10.7498/aps.60.045201
    [9] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, doi: 10.7498/aps.59.8701
    [10] 叶超, 宁兆元, 程珊华. 电子回旋共振等离子体增强沉积氟化非晶碳薄膜的光学性质. 物理学报, doi: 10.7498/aps.50.2017
    [11] 马洪良, 汤家镛. 142—146,148,150Nd+同位素位移的共线快离子束激光光谱学实验研究. 物理学报, doi: 10.7498/aps.50.453
    [12] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟. 物理学报, doi: 10.7498/aps.49.497
    [13] 杜小龙, 陈广超, 江德仪, 姚鑫兹, 朱鹤孙. 电子回旋共振等离子体特性及其对生长氮化镓晶膜的影响. 物理学报, doi: 10.7498/aps.48.257
    [14] 宫野, 温晓军, 张鹏云, 邓新绿. 圆柱模型下电子回旋共振微波等离子体离子输运过程的数值研究. 物理学报, doi: 10.7498/aps.46.2376
    [15] 沈学民, 王兆申, 邵玉贵, 薛迪冶, 丁家义, 许德政, 吴从中, 邓旭, 王坚, 汪亚明, 李有宜, 实验小组. HT-6M托卡马克二次谐波离子回旋共振加热实验. 物理学报, doi: 10.7498/aps.44.1442
    [16] 刘胜侠. HT-6M托卡马克离子回旋共振频率加热电荷交换能谱的分析. 物理学报, doi: 10.7498/aps.44.152
    [17] 戴长建, 于长江. 脉冲激光场选择性光电离同位素原子. 物理学报, doi: 10.7498/aps.43.356
    [18] 吴俊伶. 等离子体中相对论性电子回旋波色散关系. 物理学报, doi: 10.7498/aps.42.775
    [19] 陈雁萍, 周玉美. 弱相对论性非热平衡等离子体的电子迴旋共振加热. 物理学报, doi: 10.7498/aps.33.1050
    [20] 徐至展, 李安民, 陈时胜, 林礼煌, 梁向春, 欧阳斌, 毕无忌, 何兴法, 殷光裕, 张树干, 潘成明. 激光加热等离子体研究. 物理学报, doi: 10.7498/aps.30.1077
计量
  • 文章访问数:  239
  • PDF下载量:  4
出版历程
  • 上网日期:  2025-03-06

/

返回文章
返回