搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱金属原子气室中自旋极化态的高时空分辨调制方法

马东辉 贺欣欣 滑泽宇 李艳君 董海峰 温焕飞 菅原康弘 唐军 马宗敏 刘俊

引用本文:
Citation:

碱金属原子气室中自旋极化态的高时空分辨调制方法

马东辉, 贺欣欣, 滑泽宇, 李艳君, 董海峰, 温焕飞, 菅原康弘, 唐军, 马宗敏, 刘俊

Highly time-resolved modulation of spin-polarized states in alkali-metal atomic vapor cell

MA Donghui, HE Xinxin, HUA Zeyu, LI Yanjun, DONG Haifeng, WEN Huanfei, YASUHIRO Sugawara, TANG Jun, MA Zongmin, LIU Jun
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 原子自旋成像技术对气室内温度分布、旋光角检测以及镀膜抗弛豫特性测量至关重要,其关键在于精确捕捉并解析原子自旋极化的复杂时空动态特性,这些特性直接关系到磁强计带宽的扩展及磁梯度检测的灵敏度提升。传统的气室内分割成像方法因静态特性限制,无法实时捕捉原子自旋极化态的动态演变过程,制约了量子测量仪器的性能提升。针对这一挑战,本研究提出了一种实时调控原子自旋极化态的碱金属原子气室动态自旋成像方法,在空间分布上实时控制光束阵列中不同位置激光束的连续通断;在时间序列上控制光束阵列中每束光的通断频率变化,从而生成具有特定空间分布和频率特性的激光,分别与气室内部不同位置的碱金属原子相互作用,诱导原子自旋极化程度的变化。通过对激光特性的精细调节,当泵浦光的调制频率与原子在磁场中的拉莫尔频率相匹配时,原子自旋极化达到最大值,系统处于共振状态;当调制频率与拉莫尔频率不匹配时,原子自旋极化程度降低。通过这种频率调制方法实现了对原子自旋极化状态地动态操控。实验结果表明,该方法达到了95.9μm的空间分辨率和355帧的时间分辨率,显著优于传统静态自旋成像方法。此方法显著增强了对原子自旋极化动态特性的认知,使我们能够更精确地观测并分析磁场分布的动态特征,从而为量子仪表性能的进一步优化提供了坚实的实验依据与有力支持。
    As the central element of state-of-the-art quantum measurement devices like atomic clocks, atomic gyroscopes, and atomic magnetometers, the spatial and temporal evolution of atomic spin polarization inside the atomic vapor cell has a major effect on both increasing the magnetometers' bandwidth and improving the precision of magnetic gradient measurements. However, the major factor preventing the further advancement of quantum measurement instruments' performance is the inherent static nature of the conventional intra-vapor cell segmentation imaging technique, which makes it challenging to achieve the real-time capture of the dynamic evolution of atomic spin states. Our research team suggests a dynamic spin imaging method for alkali metal atomic vapor cells with real-time modification of atomic spin polarization states in order to overcome this technological difficulty. In particular, to guarantee that the laser can precisely act on the alkali metal atoms in various regions within the vapor cell, we employ a complex beam array management system to modify the on/off state of the laser beams at various positions in the spatial dimension in real time. In the meantime, we generate laser fields with particular spatial distribution and frequency characteristics by using frequency modulation techniques in the time series to accurately regulate the on-off frequency of each laser beam in the beam array. These laser beams cause dynamic changes in the atomic spin polarization state by interacting with alkali metal atoms at various points within the vapor cell. Through precise adjustment of the laser properties, we have been able to see and study the dynamic evolution of the atomic spin-polarization state in real time. According to the experimental data, the technology outperforms the conventional static spin imaging techniques by achieving an excellent temporal resolution of 355 frames per second and a spatial resolution of 95.9 micrometers. The effective use of this method allows us to monitor and evaluate the dynamic aspects of magnetic field distribution with previously unheard-of precision, in addition to significantly enhancing our understanding of the dynamic properties of atomic spin polarization.
  • [1]

    Albert M, Cates G, Driehuys B, Happer W, Saam B, Springer Jr, Wishnia A 1994Nature 370 199

    [2]

    Chupp T, Hoare R, Walsworth R, Wu B 1994Phys. Rev. Lett. 72 2363

    [3]

    Navon G, Song Y Q, Room T, Appelt S, Taylor R, Pines A 1996Scienc 271 1848

    [4]

    Ishikawa K, Anraku Y, Takahashi Y, Yabuzaki T 1999J. Opt. Soc. Am. B 16 31

    [5]

    Hao C P 2022Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [郝传鹏2022博士学位论文(合肥:中国科学技术大学)]

    [6]

    Savukov I, Romalis M 2005Phys. Rev. Lett. 94 123001

    [7]

    Xu S J, Yashchuk V, Donaldson M, Rochester S, Budker D, Pines A 2006PNAS 103 12668

    [8]

    Savukov I, Karaulanov T 2014J. Magn. Reson. 249 49

    [9]

    Young A, Appelt S, Baranga A, Erickson C, Happer W 1997Appl. Phys. Lett. 70 3081

    [10]

    Skalla J, Wackerle G, Mehring M 1997Opt. Commun. 143 209

    [11]

    Skalla J, Wackerle G, Mehring M, Pines A 1997Phys. Lett. A 226 69

    [12]

    Baranga A, Appelt S, Erickson C, Young A, Happer W 1998Phys. Rev. A 58 2282

    [13]

    Giel D, Hinz G, Nettels D, Weis A 2000Opt. Express 6 251

    [14]

    Savukov I 2015J. Magn. Reson. 256 9

    [15]

    Ito Y, Sato D, Kamada K, Kobayashi T 2014IEEE Trans. Magn. 50 1

    [16]

    Nishi K, Ito Y, Kobayashi T 2018Opt. Express 26 1988

    [17]

    Johnson C, Schwindt P 2010IEEE International Frequency Control Symposium Newport Beach, CA, June 4-6, 2010 p371

    [18]

    Johnson C, Schwindt P, Weisend M 2010Appl. Phys. Lett. 97 243703

    [19]

    Kominis I, Kornack T, Allred J, Romalis M 2003Nature 422 596

    [20]

    Gusarov A, Levron D, Paperno E, Shuker R, Baranga A 2009IEEE Trans. Magn. 45 4478

    [21]

    Kim K, Begus S, Xia H, Lee S, Jazbinsek V, Trontelj Z, Romalis M 2014NeuroImage. 89 143

    [22]

    Xia H, Baranga A, Hoffman D, Romalis M 2006Appl. Phys. Lett. 89 211104

    [23]

    Mamishin Y, Ito Y, Kobayashi T 2017IEEE Trans. Magn. 534001606

    [24]

    Dolgovskiy V, Fescenko I, Sekiguchi N, Colombo S, Lebedev V, Zhang J, Weis A 2016Appl. Phys. Lett. 109 023505

    [25]

    Weis A, Colombo S, Dolgovskiy V, Grujic Z, Lebedev V, Zhang J 2017J. Phys.: Conf. Ser. 793 012032

    [26]

    Taue S, Toyota Y, Fujimori K, Fukano H 201722nd Microoptics Conference Tokyo, November 19-22, 2017 p212

    [27]

    Cao Y P, Su X Y, Xiang L Q 2002Laser.Journal 23 16(in Chinese) [曹益平,苏显渝,向立群2002激光杂志23 16]

    [28]

    Dong H F, Yin L X, Li A X, Zhao N, Chen J L, Sun M J 2019J. Appl. Phys. 125 023908

    [29]

    Dong H F, Chen J L, Li J M, Liu C, Li A X, Zhao N, Guo F Z 2019J. Appl. Phys. 125 243904

    [30]

    Ding Z C, Yuan J, Long X 2018Sensors 18 1401

    [31]

    Wyllie R, 2012Ph. D. Dissertation (Madison: University of Wisconsin–Madison)

    [32]

    Mitsunaga T, Nayar S 1999 Proceedings. 1999IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fort Collins, CO, July 6-9, 1999 p374

  • [1] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起. 三端口光纤耦合原子气室探头的开发及其微波数字通信应用. 物理学报, doi: 10.7498/aps.71.20220594
    [2] 王贺岩, 高怡帆, 廖家宝, 陈俊彩, 李怡莲, 吴怡, 徐国亮, 安义鹏. 二维NiBr2单层自旋电子输运以及光电性质. 物理学报, doi: 10.7498/aps.71.20212384
    [3] 李春雷, 徐燕, 郑军, 王小明, 袁瑞旸, 郭永. 磁电势垒结构中光场辅助电子自旋输运特性. 物理学报, doi: 10.7498/aps.69.20200237
    [4] 梁世恒, 陆沅, 韩秀峰. 自旋发光二极管研究进展. 物理学报, doi: 10.7498/aps.69.20200866
    [5] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化. 物理学报, doi: 10.7498/aps.67.20180080
    [6] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, doi: 10.7498/aps.64.147301
    [7] 伊丁, 武镇, 杨柳, 戴瑛, 解士杰. 有机分子在铁磁界面处的自旋极化研究. 物理学报, doi: 10.7498/aps.64.187305
    [8] 郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤. 氢化铁的自旋极化效应及势能函数. 物理学报, doi: 10.7498/aps.63.213101
    [9] 钱郁. 时空调制引起的漫游螺旋波与旅行螺旋波共存现象. 物理学报, doi: 10.7498/aps.62.058201
    [10] 黎欢, 郭卫. 自旋极化对Kondo系统基态的影响. 物理学报, doi: 10.7498/aps.59.7320
    [11] 陈华, 杜磊, 庄奕琪, 牛文娟. Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究. 物理学报, doi: 10.7498/aps.58.5685
    [12] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究. 物理学报, doi: 10.7498/aps.57.3853
    [13] 滕利华, 余华梁, 黄志凌, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化对电子复合动力学的影响研究. 物理学报, doi: 10.7498/aps.57.6593
    [14] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运. 物理学报, doi: 10.7498/aps.57.5899
    [15] 郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann. 利用飞秒双光子光电子发射研究GaAs(100)的自旋动力学过程. 物理学报, doi: 10.7498/aps.54.3200
    [16] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析. 物理学报, doi: 10.7498/aps.54.1814
    [17] 付吉永, 任俊峰, 刘德胜, 解士杰. 一维铁磁/有机共轭聚合物的自旋极化研究. 物理学报, doi: 10.7498/aps.53.1989
    [18] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究. 物理学报, doi: 10.7498/aps.53.254
    [19] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, doi: 10.7498/aps.52.2569
    [20] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运. 物理学报, doi: 10.7498/aps.49.1814
计量
  • 文章访问数:  81
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-03-05

/

返回文章
返回