-
本文提出了一种基于光纤内马赫-曾德尔干涉仪结构的低频声传感方案,其中传感光纤是由多模-超高数值孔径-多模光纤焊接级联而成的微型马赫-曾德尔干涉仪,可有效提高光纤弯曲灵敏度;然后将该干涉仪结构与聚对苯二甲酸乙二酯换能膜片进行组合,使得传感光纤在受到声压作用时与膜片同步产生曲率变化,间接增大了光纤接收声场的面积。文章推导了该系统的声传感理论,并通过实验进行了验证,得到传感系统在65 Hz处信噪比约为57 dB,最小可探测声压为267.9 μPa/Hz1/2;在50 Hz-500 Hz的频率范围内,对声波有较好响应,信噪比均在40 dB以上,信号较平坦。该方案可显著提升传感系统声响应能力,实现对低频声波的有效检测,且具有制作简单、成本低的特点,在声波探测相关应用领域有着很大的发展潜力。This paper proposes a low-frequency acoustic sensing scheme based on an in-fiber Mach-Zehnder interferometer structure. The structure utilizes the refractive index difference between fiber core and cladding, forming a miniature Mach-Zehnder interferometer through fusion splicing of specialty optical fibers in a multi-mode-ultra-high numerical aperture-multi-mode configuration. This design achieves modal recombination between cladding and core modes, thereby effectively enhancing fiber bending sensitivity. The interferometer structure is then combined with a polyethylene terephthalate (PET) transducer diaphragm, enabling the sensing fiber to undergo curvature changes synchronously with the diaphragm under sound pressure, thereby indirectly increasing the area over which the fiber receives the acoustic field. When external acoustic pressure induces bending modulation on both the sensing fiber and transducer diaphragm, the differential strain distribution between the fiber cladding and core generates an optical path difference. This manifests as interference spectrum shifts, enabling effective detection of low-frequency acoustic signals through demodulation of the spectral variations. The paper derives the theoretical framework for the acoustic sensing system and validates it through experiments. Results show that at 65 Hz, the system achieves a signal-to-noise ratio (SNR) of approximately 57 dB and a minimum detectable sound pressure of 267.9 μPa/Hz1/2@65 Hz. Within the frequency range of 50 Hz-500 Hz, the system demonstrates good acoustic response, with a SNR consistently above 40 dB and relatively flat signal output. This scheme significantly enhances the acoustic response capability of the sensing system, enabling effective detection of low-frequency acoustic waves. Additionally, it features simple fabrication and low cost, showing great potential for development in acoustic wave detection applications.
-
Keywords:
- optical fiber sensing /
- Mach-Zehnder interferometer /
- acoustic sensor /
- acoustic measurement
-
[1] Zhao Y, Chen M-q, Xia F, Lv R-q 2018 Sensor Acoustic A-Phys 270 162
[2] Shnaiderman R, Wissmeyer G, Seeger M, Soliman D, Estrada H, Razansky D, Rosenthal A, Ntziachristos V 2017 Optica 4 1180
[3] Basiri-Esfahani S, Armin A, Forstner S, Bowen W P 2019 Nat. Commun. 10 132
[4] Mydlarz C, Salamon J, Bello J P 2017 Appl. Acoustics 117 207
[5] Jia J, Jiang Y, Zhang L, Gao H, Jiang L 2019 IEEE Sens. J. 19 7988
[6] Liu X, Cai C, Dong Z-F, Deng X, Hu X-Y, Qi Z-M 2022 Acta Phys. Sin. 71 094301
[7] Gong Z, Chen K, Zhou X, Yang Y, Zhao Z, Zou H, Yu Q 2017 J. Lightwave Technol. 35 5276
[8] Xu Y, Zhang L, Gao S, Lu P, Mihailov S, Bao X 2017 Opt. Lett. 42 1353
[9] Li Y, Tian J, Fu Q, Sun Y, Yao Y 2019 J. Lightwave Technol. 37 1160
[10] Dass S, Chatterjee K, Kachhap S, Jha R 2021 J. Lightwave Technol. 39 3974
[11] Wu Y, Yu C, Wu F, Li C, Zhou J, Gong Y, Rao Y, Chen Y 2017 J. Lightwave Technol. 35 4344
[12] Feng G-H, Chen W-M 2016 Smart Mater. Struct. 25 055046
[13] Wang S, Lu P, Zhang L, Liu D, Zhang J 2014 J. Mod. Opt. 61 1033
[14] Tian J, Zuo Y-W, Zhou K-M, Yang Q, Hu X, Jiang Y 2024 J. Lightwave Technol. 42 2538
[15] Fu X, Lu P, Ni W, Liu L, Liao H, Liu D, Zhang J 2016 IEEE Photonics J. 8 6805713
[16] Yang Q, Tian J, Hu X, Tian J, He Q 2024 Photonics 11 363
[17] Jiang B, Bai Z, Wang C, Zhao Y, Zhao J, Zhang L, Zhou K 2018 J. Lightwave Technol. 36 742
[18] Guo M, Chen K, Zhang G, Li C, Zhao X, Gong Z, Yu Q 2022 J. Lightwave Technol. 40 4481
[19] Ren D, Liu X, Zhang M, Gao R, Qi Z-M 2021 IEEE Sens. J. 21 14655
[20] Dass S, Jha R 2017 J. Lightwave Technol. 35 5411
[21] Xiang Z, Dai W, Rao W, Cai X, Fu H 2021 IEEE Sens. J. 21 17882
[22] Chen J, Xue C, Zheng Y, Wu L, Chen C, Han Y 2021 Opt. Express 29 16447
[23] Tang P-K, Wang P-H, Li M-L, Lu M S C 2011 J. Micromech. Microeng. 21 025013
[24] Wei H, Wu Z, Sun K, Zhang H, Wang C, Wang K, Yang T, Pang F, Zhang X, Wang T, Krishnaswamy S 2023 Photonics Res. 11 780
计量
- 文章访问数: 191
- PDF下载量: 7
- 被引次数: 0