搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声吸收谱峰值点的天然气燃烧特性检测理论

张克声 陈刘奎 欧卫华 蒋学勤 龙飞

引用本文:
Citation:

基于声吸收谱峰值点的天然气燃烧特性检测理论

张克声, 陈刘奎, 欧卫华, 蒋学勤, 龙飞

A theory for monitoring combustion of natural gas based on the maximum point in sound absorption spectrum

Zhang Ke-Sheng, Chen Liu-Kui, Ou Wei-Hua, Jiang Xue-Qin, Long Fei
PDF
导出引用
  • 天然气的成分构成会随产地来源变化而不同, 使其具有不同的燃烧特性和经济价值.本文利用声吸收谱峰值点随气体成分变化而改变的声分子弛豫现象, 提出一种天然气燃烧特性检测理论.它基于两频点上声测量值可合成声吸收谱峰值点, 且依赖于频率的声吸收谱可由峰值点重建的物理原理; 可利用峰值点对应的特征量——弛豫频率和弛豫吸收最大值与气体成分的关系, 从两个维度同时定量检测天然气成分.该理论避免了传统上测量声吸收谱峰值点方法需要不断改变气体腔体压强的问题, 还具有无需测量气体密度的优点.
    Compositions of natural gases are different between each other because of different sources, resulting in the fact that natural gases have different energy contents and monetary value. This paper presents a theory to monitor the combustion properties of natural gas by using the acoustic relaxation phenomenon in which the maximum point of acoustic spectrum varies with gas composition. The theory is developed from the frequency-dependent sound absorption spectrum which can be reconstructed from its maximum point synthesized in the acoustic measurements at two frequencies. The theory uses the relation between the two values of the maximum point (i.e. the relaxation frequency and the maximum relaxational absorption) and gas composition to quantitatively monitor the gas. Moreover, the theory has the advantages of avoiding the detection of the gas density and the variation of the ambient pressure, which is necessary in the traditional way of measuring the maximum point of sound absorption spectrum.
    • 基金项目: 国家自然科学基金(批准号: 61461008, 61402122, 61371139)、贵州理工学院高层次人才引进项目(批准号: XJGC20140601)、重庆市自然科学基金(批准号: cstcjjA40041)和重庆市教委科学技术研究项目(批准号: KJ131422)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61461008, 61402122, 61371139), the recruitment Program of Guizhou Institute of Technology, China (Grant No. XJGC20140601), the Natural Science Foundation Project of CQ CSTC (Grant No. cstcjjA40041), and the Science Technology Research Project of CQJW (Grant No. KJ131422).
    [1]

    Carlson J E, Martinsson P E 2005 J. Acoust. Soc. Am. 117 2961

    [2]

    Lueptow R M, varPhillips S 1994 Meas. Sci. Technol. 5 1375

    [3]

    Hauptmann P, Hoppe N, Puttmer A 2002 Meas. Sci. Technol. 13 R73

    [4]

    Carlson J E, Carlson R 2006 IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 53 606

    [5]

    Petculescu A G, Hall B, Fraenzle R, varPhillips S, Lueptow R M 2006 J. Acoust. Soc. Am. 120 1779

    [6]

    Petculescu A G, Lueptow R M 2005 Phys. Rev. Lett. 94 238301

    [7]

    Petculescu A G, Lueptow R M 2012 Sensors & Actuators: B. Chemical 169 121

    [8]

    Zhang K S, Wang S, Zhu M, Ding Y 2013 Meas. Sci. Technol. 24 055002

    [9]

    Zeisel D, Menzi H, Ullrich L 2000 Sensors and Actuators A: Physical 80 233

    [10]

    Herzfeld K F, Litovitz T A 1959 Absorption and Dispersion of Ultrasonic Waves (New York: Academic)

    [11]

    Lambert J D 1977 Vibrational and Rotational Relaxation in Gases (Oxford: Clarendon)

    [12]

    Bhatia A B 1985 Ultrasonic Absorption (New York: Dover)

    [13]

    Zhang K S, Wang S, Zhu M, Ding Y, Hu Y 2013 Chin. Phys. B 22 014305

    [14]

    Petculescu A G, Lueptow R M 2005 J. Acoust. Soc. Am. 117 175

    [15]

    Zhang K S, Wang S, Zhu M, Hu Y, Jia Y Q 2012 Acta Phys. Sin. 61 174301 (in Chinese) [张克声, 王殊, 朱明, 胡佚, 贾雅琼 2012 物理学报 61 174301]

    [16]

    Edited by Mason W P 1965 Physical Acoustics (Vol. II, Pt. A) (New York: Academic Press) Chaps 2-3

    [17]

    Dain Y, Lueptow R M 2001 J. Acoust. Soc. Am. 109 1955

    [18]

    Ejakov S G, varPhillips S, Dain Y, Lueptow R M, Visser J H 2003 J. Acoust. Soc. Am. 113 1871

    [19]

    Bass H E, Chambers J P 2001 J. Acoust. Soc. Am. 109 3069

    [20]

    Yan S, Wang S 2008 Acta Phys. Sin. 57 4282 (in Chinese) [鄢舒, 王殊 2008 物理学报 57 4282]

    [21]

    Cottet A, Neumeier Y, Scarborough D, Bibik O, Lieuwen T 2004 J. Acoust. Soc. Am. 116 2081

    [22]

    Mougin P, Wilkinson D, Roberts K, Tweedie R 2001 J. Acoust. Soc. Am. 109 274

  • [1]

    Carlson J E, Martinsson P E 2005 J. Acoust. Soc. Am. 117 2961

    [2]

    Lueptow R M, varPhillips S 1994 Meas. Sci. Technol. 5 1375

    [3]

    Hauptmann P, Hoppe N, Puttmer A 2002 Meas. Sci. Technol. 13 R73

    [4]

    Carlson J E, Carlson R 2006 IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 53 606

    [5]

    Petculescu A G, Hall B, Fraenzle R, varPhillips S, Lueptow R M 2006 J. Acoust. Soc. Am. 120 1779

    [6]

    Petculescu A G, Lueptow R M 2005 Phys. Rev. Lett. 94 238301

    [7]

    Petculescu A G, Lueptow R M 2012 Sensors & Actuators: B. Chemical 169 121

    [8]

    Zhang K S, Wang S, Zhu M, Ding Y 2013 Meas. Sci. Technol. 24 055002

    [9]

    Zeisel D, Menzi H, Ullrich L 2000 Sensors and Actuators A: Physical 80 233

    [10]

    Herzfeld K F, Litovitz T A 1959 Absorption and Dispersion of Ultrasonic Waves (New York: Academic)

    [11]

    Lambert J D 1977 Vibrational and Rotational Relaxation in Gases (Oxford: Clarendon)

    [12]

    Bhatia A B 1985 Ultrasonic Absorption (New York: Dover)

    [13]

    Zhang K S, Wang S, Zhu M, Ding Y, Hu Y 2013 Chin. Phys. B 22 014305

    [14]

    Petculescu A G, Lueptow R M 2005 J. Acoust. Soc. Am. 117 175

    [15]

    Zhang K S, Wang S, Zhu M, Hu Y, Jia Y Q 2012 Acta Phys. Sin. 61 174301 (in Chinese) [张克声, 王殊, 朱明, 胡佚, 贾雅琼 2012 物理学报 61 174301]

    [16]

    Edited by Mason W P 1965 Physical Acoustics (Vol. II, Pt. A) (New York: Academic Press) Chaps 2-3

    [17]

    Dain Y, Lueptow R M 2001 J. Acoust. Soc. Am. 109 1955

    [18]

    Ejakov S G, varPhillips S, Dain Y, Lueptow R M, Visser J H 2003 J. Acoust. Soc. Am. 113 1871

    [19]

    Bass H E, Chambers J P 2001 J. Acoust. Soc. Am. 109 3069

    [20]

    Yan S, Wang S 2008 Acta Phys. Sin. 57 4282 (in Chinese) [鄢舒, 王殊 2008 物理学报 57 4282]

    [21]

    Cottet A, Neumeier Y, Scarborough D, Bibik O, Lieuwen T 2004 J. Acoust. Soc. Am. 116 2081

    [22]

    Mougin P, Wilkinson D, Roberts K, Tweedie R 2001 J. Acoust. Soc. Am. 109 274

  • [1] 陈进龙, 陶然, 李冲, 张健磊, 付琛, 罗景庭. 基于SnS2/In2O3的气体传感器及其室温下高性能NO2检测. 物理学报, 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [2] 熊枫, 彭志敏, 丁艳军, 杜艳君. NO紫外宽带吸收光谱的非线性响应及实验. 物理学报, 2022, 71(20): 203302. doi: 10.7498/aps.71.20220975
    [3] 尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏. 面向SF6气体绝缘设备故障检测的光声CO气体传感器设计和优化. 物理学报, 2021, 70(17): 170701. doi: 10.7498/aps.70.20210532
    [4] 张向群, 王殊, 朱明. 常温下氢气声转动弛豫模型研究. 物理学报, 2018, 67(9): 094301. doi: 10.7498/aps.67.20172665
    [5] 张锐, 赵学玒, 赵迎, 王喆, 汪曣. 激光器特性在痕量气体检测中的影响. 物理学报, 2014, 63(14): 140701. doi: 10.7498/aps.63.140701
    [6] 许雪梅, 李奔荣, 杨兵初, 蒋礼, 尹林子, 丁一鹏, 曹粲. 基于光声光谱技术的NO,NO2气体分析仪研究. 物理学报, 2013, 62(20): 200704. doi: 10.7498/aps.62.200704
    [7] 贾雅琼, 王殊, 朱明, 张克声, 袁飞阁. 气体声弛豫过程中有效比热容与弛豫时间的分解对应关系. 物理学报, 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
    [8] 张克声, 王殊, 朱明, 胡轶, 贾雅琼. 混合气体声复合弛豫频谱的解析模型. 物理学报, 2012, 61(17): 174301. doi: 10.7498/aps.61.174301
    [9] 汤媛媛, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 许振宇, 束小文, 张帅, 何莹, 耿辉, 崔益本. 基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究. 物理学报, 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [10] 李政颖, 王洪海, 姜宁, 程松林, 赵磊, 余鑫. 光纤气体传感器解调方法的研究. 物理学报, 2009, 58(6): 3821-3826. doi: 10.7498/aps.58.3821
    [11] 朱 明, 王 殊, 王菽韬, 夏东海. 基于混合气体分子复合弛豫模型的一氧化碳浓度检测算法. 物理学报, 2008, 57(9): 5749-5755. doi: 10.7498/aps.57.5749
    [12] 鄢 舒, 王 殊. 多原子分子气体中声波弛豫衰减谱的重建算法. 物理学报, 2008, 57(7): 4282-4291. doi: 10.7498/aps.57.4282
    [13] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器. 物理学报, 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [14] 张包铮, 李宇新, 林美荣, 陈文驹. 多声子无辐射弛豫速率的理论研究. 物理学报, 1990, 39(2): 261-269. doi: 10.7498/aps.39.261
    [15] 李玉璋, 徐仲英, 葛惟锟, 许继宗, 郑宝贞, 庄蔚华. 多量子阱结构中热载流子弛豫过程中的非平衡声子效应. 物理学报, 1989, 38(9): 1540-1544. doi: 10.7498/aps.38.1540
    [16] 林子敬, 汪克林. Si(111)理想、弛豫及2×1重构表面的声子谱研究. 物理学报, 1989, 38(6): 891-899. doi: 10.7498/aps.38.891
    [17] 郑杭, 方俊鑫. 碱卤晶体中激子-声子相互作用与光吸收谱线宽. 物理学报, 1987, 36(3): 339-349. doi: 10.7498/aps.36.339
    [18] 陈述春, 戴凤妹. 玻璃中Nd3+离子4F3/2态的多声子弛豫及电子-声子相互作用. 物理学报, 1981, 30(5): 624-632. doi: 10.7498/aps.30.624
    [19] 朱砚磬, 王志强. 自旋波-声子耦合对反铁磁体红外吸收谱的影响. 物理学报, 1966, 22(3): 360-370. doi: 10.7498/aps.22.360
    [20] 钱祖文. 化学反应媒质中的声吸收理论及关于MgSO4水溶液的弛豫机构. 物理学报, 1962, 18(10): 501-508. doi: 10.7498/aps.18.501
计量
  • 文章访问数:  6363
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-06
  • 修回日期:  2014-08-19
  • 刊出日期:  2015-03-05

/

返回文章
返回