搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常温下氢气声转动弛豫模型研究

张向群 王殊 朱明

引用本文:
Citation:

常温下氢气声转动弛豫模型研究

张向群, 王殊, 朱明

Acoustic rotational relaxation of hydrogen around normal temperture

Zhang Xiang-Qun, Wang Shu, Zhu Ming
PDF
导出引用
  • 氢气声弛豫过程主要由氢气分子的转动弛豫决定.然而,当前大部分声弛豫模型是基于气体分子的振动弛豫,并不适用于氢气.本文利用理想气体焓变与定压热容的关系,提出了一种基于氢气分子转动的弛豫模型,并讨论了转动弛豫和振动弛豫的相似与不同.该模型不仅适用于氢气,还能够和其他气体的振动弛豫模型相结合求解混合气体的声弛豫吸收谱和声速频谱.仿真结果表明,对于H2,N2/H2,CO2/H2等气体,该模型生成的声速、声弛豫谱曲线与实验数据符合.本模型为包含氢气的混合气体声学探测提供了一个有效的理论模型.
    Hydrogen is an important energy carrier, and it is widely used due to its extraordinary advantages, such as high heat, clean fuel, being large-scale and renewable. The detection of hydrogen is essential in practical application. Therefore, many researches have focused on monitoring the hydrogen concentration over the past years. Acoustic relaxation theory based on molecular relaxation process is a very promising method of detecting hydrogen gas. However, the existing acoustic relaxation models for gas detection are developed from the vibrational relaxation of gas molecules, and thus they are not applicable for hydrogen and its mixture. In this paper, we present a model for the rotational relaxation process of hydrogen. Firstly, the molecular relaxation process of hydrogen is different from those of other gases due to its large spacing of rotational energy-level and special molecular physical structure. Acoustic relaxation process of hydrogen is mostly determined by the molecular rotational relaxation. Hydrogen molecule is made up of one quarter of para-hydrogen and three quarters of ortho-hydrogen at normal temperature. There is three-rotational-level model for hydrogen rotational relaxation, such as rotational level in states with J=0, 2, 4 (J is rotational quantum-number) for para-hydrogen and J=1, 3, 5 for ortho-hydrogen. Secondly, we introduce effective specific heat into one-mode rotational relaxation at constant pressure, and then extend it to multi-mode rotational relaxation. Upon periodic perturbation of acoustic waves, the temperature and the number of molecules in each rotational level change periodically in the relaxation process. On the basis, we obtain the relaxation equations in a matrix form and calculate effective specific heat at constant pressure for rotational relaxation process. With the relationship between the complex wave number and the effective thermodynamics acoustic speed, we calculate the frequency-dependent acoustic speed and relaxation absorption, and then discuss the difference between the rotational relaxation and the vibrational relaxation. Thirdly, we compare the predicted acoustic speed and absorption spectrum with their corresponding experimental data and investigate the influences of rotational characteristics on absorption spectra in hydrogen and its mixtures. The simulation results show that acoustic speed and relaxation absorption curves calculated by the proposed model are in good agreement with their corresponding experimental data. The model is not only applicable to pure hydrogen gas but also can be used to obtain the acoustic relaxation spectra of gas mixtures with multiple vibrational modes. This model provides a theoretical foundation for the acoustic detecting of hydrogen gas mixtures.
      通信作者: 朱明, zhuming@mail.hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61571201,61371139,61461008)、河南省高等学校重点科研项目计划(批准号:15A510037)和河南省高校科技创新人才计划(批准号:18HASTIT022)资助的课题.
      Corresponding author: Zhu Ming, zhuming@mail.hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61571201, 61371139, 61461008), the Program for Key Scientific Research in Universities of Henan Province, China (Grant No. 15A510037), and the Program for Science and Technology Innovation Talents in Universities of Henan Province, China (Grant No. 18HASTIT022).
    [1]

    Melaina M W, Antonia O, Penev M 2013Blending Hydrogen Into Natural Gas Pipeline Networks: a Review of Key Issues (Golden, CO: National Renewable Energy Lab.) Report No. NREL/TP-5600-51995

    [2]

    Hanf S, Bgzi T, Keiner R, Frosch T, Popp J 2015 Anal. Chem. 87 982

    [3]

    Hbert T, Boon-Brett L, Black G, Banach U 2011 Sens. Actuators B: Chem. 157 329

    [4]

    Phillips S, Dain Y, Lueptow R M 2003 Meas. Sci. Technol. 14 70

    [5]

    Zhang K S, Zhang X Q, Tang W Y, Xiao Y Q, Jiang X Q 2018 Acta Acust. 43 399 (in Chinese) [张克声, 张向群, 唐文勇, 肖迎群, 蒋学勤 2018 声学学报 43 399]

    [6]

    Hauptmann P, Hoppe N, Pttmer A 2002 Meas. Sci. Technol. 13 R73

    [7]

    Hu J H, Zheng X F 2011 Practical Infrared Spectroscopy (Beijing: Science Press) pp1-20 (in Chinese) [胡皆汉, 郑学仿 2011 实用红外光谱学 (北京: 科学出版社) 第120页]

    [8]

    Du G, Zhu Z M, Gong X 2012 Acoustics Foundation (Nanjing: Nanjing University Press) pp295-310

    [9]

    Liu T, Wang S, Zhu M 2017 J. Acoust. Soc. Am. 141 1844

    [10]

    Hong J, Lee S, Seo J, Pyo S, Kim J, Lee T 2015 ACS Appl. Mater. Interfaces 7 3554

    [11]

    Minami Y, Yogi T, Sakai K 2011 J. Opt. 13 075708

    [12]

    Dain Y, Lueptow R M 2001 J. Acoust. Soc. Am. 109 1955

    [13]

    Ejakov S G, Phillips S, Dain Y, Lueptow R M, Visser J H 2003 J. Acoust. Soc. Am. 113 1871

    [14]

    Petculescu A G, Lueptow R M 2005 Phys. Rev. Lett. 94 238301

    [15]

    Petculescu A G, Lueptow R M 2012 Sens. Actuators B: Chem. 169 121

    [16]

    Yan S, Wang S 2008 Acta Phys. Sin. 57 4282 (in Chinese) [鄢舒, 王殊 2008 物理学报 57 4282]

    [17]

    Jia Y Q, Wang S, Zhu M, Zhang K S, Yuan F G 2012 Acta Phys. Sin. 61 095101 (in Chinese) [贾雅琼, 王殊, 朱明, 张克声, 袁飞阁 2012 物理学报 61 095101]

    [18]

    Zhang K S, Wang S, Zhu M, Hu Y, Jia Y Q 2012 Acta Phys. Sin. 61 174301 (in Chinese) [张克声, 王殊, 朱明, 胡佚, 贾雅琼 2012 物理学报 61 174301]

    [19]

    Zhang K S, Chen L K, Ou W H, Jiang X Q, Long F 2015 Acta Phys. Sin. 64 054302 (in Chinese) [张克声, 陈刘奎, 欧卫华, 蒋学勤, 龙飞 2015 物理学报 64 054302]

    [20]

    Zhang K S, Zhu M, Tang W Y, Ou W H, Jiang X Q 2016 Acta Phys. Sin. 65 134302 (in Chinese) [张克声, 朱明, 唐文勇, 欧卫华, 蒋学勤 2016 物理学报 65 134302]

    [21]

    Zhang K S, Wang S, Zhu M, Ding Y, Hu Y 2013 Chin. Phys. B 22 014305

    [22]

    Hu Y, Wang S, Zhu M, Zhang K S, Liu T, Xu D 2014 Sens. Actuators B: Chem. 203 1

    [23]

    Zhu M, Wang S, Wang S T, Xia D H 2008 Acta Phys. Sin. 57 5749 (in Chinese) [朱明, 王殊, 王菽韬, 夏东海 2008 物理学报 57 5749]

    [24]

    Zhu M, Liu T, Wang S 2017 Meas. Sci. Technol. 28 085008

    [25]

    Rhodes Jr J E 1946 Phys. Rev. 70 932

    [26]

    Takayanagi K, Kishimoto T 1953 Prog. Theor. Phys. 9 578

    [27]

    Geide K 1963 Acta Acust. Acust. 13 31

    [28]

    Sluijter C G, Knaap H F P, Beenakker J J M 1964 Physica 30 745

    [29]

    Knaap H F P, Sluijter C G, Beenakker J J M 1965 Lw Temp. Phys. 1 1233

    [30]

    Winter T G, Hill G L 1967 J. Acoust. Soc. Am. 42 848

    [31]

    Behnen S W, Rothwell H L, Amme R C 1971 Chem. Phys. Lett. 8 318

    [32]

    Bauer H J, Bass H E 1972 J. Chem. Phys. 57 1763

    [33]

    Davison W D 1964 Proc. Roy. Soc. Ser. A 280 227

    [34]

    Montero S, Prez-Ros J 2014 J. Chem. Phys. 141 114301

    [35]

    Sears F W, Salinger G L 1976 Thermodynamics, Kinetic Theory and Statistical Thermodynamics (3rd Ed.) (Reading, Massachusetts: Addison_Wesley Pub. Co.) pp413-415

    [36]

    Li W 1989 Thermodynamics and Statistical Physics (Beijing: Beijing Institute of Technology Press) pp89- 120 (in Chinese) [李卫 1989 热力学与统计物理 (北京: 北京理工大学出版社) 第89120页]

    [37]

    Valley L M, Amme R C 1968 J. Acoust. Soc. Am. 44 1144

    [38]

    Minami Y, Yogi T, Sakai K 2009 J. Appl. Phys. 106 113519

    [39]

    Lambert J D 1977 Vibrational and Rotational Relaxation in Gases (Oxford: Clarendon) pp115-129

    [40]

    Herzfeld K F, Litovitz T H 1959 Absorption and Dispersion of Ultrasonic Waves (New York: Academic) pp338-343

    [41]

    Stewart E S, Stewart J L, Hubbard J C 1945 Phys. Rev. 68 231

    [42]

    Raff L M, Winter T G 1968 J. Chem. Phys. 48 3992

    [43]

    Bhatia A B 1985 Ultrasonic Absorption (New York: Dover) pp87-101

    [44]

    Warren P M 1964 Physical Acoustics: Principles and Methods (Vol. 2) (London: Academic Press) pp160-180

    [45]

    Wan J K S, Ioffe M S, Depew M C 1996 Sens. Actuators. B: Chem. 32 233

  • [1]

    Melaina M W, Antonia O, Penev M 2013Blending Hydrogen Into Natural Gas Pipeline Networks: a Review of Key Issues (Golden, CO: National Renewable Energy Lab.) Report No. NREL/TP-5600-51995

    [2]

    Hanf S, Bgzi T, Keiner R, Frosch T, Popp J 2015 Anal. Chem. 87 982

    [3]

    Hbert T, Boon-Brett L, Black G, Banach U 2011 Sens. Actuators B: Chem. 157 329

    [4]

    Phillips S, Dain Y, Lueptow R M 2003 Meas. Sci. Technol. 14 70

    [5]

    Zhang K S, Zhang X Q, Tang W Y, Xiao Y Q, Jiang X Q 2018 Acta Acust. 43 399 (in Chinese) [张克声, 张向群, 唐文勇, 肖迎群, 蒋学勤 2018 声学学报 43 399]

    [6]

    Hauptmann P, Hoppe N, Pttmer A 2002 Meas. Sci. Technol. 13 R73

    [7]

    Hu J H, Zheng X F 2011 Practical Infrared Spectroscopy (Beijing: Science Press) pp1-20 (in Chinese) [胡皆汉, 郑学仿 2011 实用红外光谱学 (北京: 科学出版社) 第120页]

    [8]

    Du G, Zhu Z M, Gong X 2012 Acoustics Foundation (Nanjing: Nanjing University Press) pp295-310

    [9]

    Liu T, Wang S, Zhu M 2017 J. Acoust. Soc. Am. 141 1844

    [10]

    Hong J, Lee S, Seo J, Pyo S, Kim J, Lee T 2015 ACS Appl. Mater. Interfaces 7 3554

    [11]

    Minami Y, Yogi T, Sakai K 2011 J. Opt. 13 075708

    [12]

    Dain Y, Lueptow R M 2001 J. Acoust. Soc. Am. 109 1955

    [13]

    Ejakov S G, Phillips S, Dain Y, Lueptow R M, Visser J H 2003 J. Acoust. Soc. Am. 113 1871

    [14]

    Petculescu A G, Lueptow R M 2005 Phys. Rev. Lett. 94 238301

    [15]

    Petculescu A G, Lueptow R M 2012 Sens. Actuators B: Chem. 169 121

    [16]

    Yan S, Wang S 2008 Acta Phys. Sin. 57 4282 (in Chinese) [鄢舒, 王殊 2008 物理学报 57 4282]

    [17]

    Jia Y Q, Wang S, Zhu M, Zhang K S, Yuan F G 2012 Acta Phys. Sin. 61 095101 (in Chinese) [贾雅琼, 王殊, 朱明, 张克声, 袁飞阁 2012 物理学报 61 095101]

    [18]

    Zhang K S, Wang S, Zhu M, Hu Y, Jia Y Q 2012 Acta Phys. Sin. 61 174301 (in Chinese) [张克声, 王殊, 朱明, 胡佚, 贾雅琼 2012 物理学报 61 174301]

    [19]

    Zhang K S, Chen L K, Ou W H, Jiang X Q, Long F 2015 Acta Phys. Sin. 64 054302 (in Chinese) [张克声, 陈刘奎, 欧卫华, 蒋学勤, 龙飞 2015 物理学报 64 054302]

    [20]

    Zhang K S, Zhu M, Tang W Y, Ou W H, Jiang X Q 2016 Acta Phys. Sin. 65 134302 (in Chinese) [张克声, 朱明, 唐文勇, 欧卫华, 蒋学勤 2016 物理学报 65 134302]

    [21]

    Zhang K S, Wang S, Zhu M, Ding Y, Hu Y 2013 Chin. Phys. B 22 014305

    [22]

    Hu Y, Wang S, Zhu M, Zhang K S, Liu T, Xu D 2014 Sens. Actuators B: Chem. 203 1

    [23]

    Zhu M, Wang S, Wang S T, Xia D H 2008 Acta Phys. Sin. 57 5749 (in Chinese) [朱明, 王殊, 王菽韬, 夏东海 2008 物理学报 57 5749]

    [24]

    Zhu M, Liu T, Wang S 2017 Meas. Sci. Technol. 28 085008

    [25]

    Rhodes Jr J E 1946 Phys. Rev. 70 932

    [26]

    Takayanagi K, Kishimoto T 1953 Prog. Theor. Phys. 9 578

    [27]

    Geide K 1963 Acta Acust. Acust. 13 31

    [28]

    Sluijter C G, Knaap H F P, Beenakker J J M 1964 Physica 30 745

    [29]

    Knaap H F P, Sluijter C G, Beenakker J J M 1965 Lw Temp. Phys. 1 1233

    [30]

    Winter T G, Hill G L 1967 J. Acoust. Soc. Am. 42 848

    [31]

    Behnen S W, Rothwell H L, Amme R C 1971 Chem. Phys. Lett. 8 318

    [32]

    Bauer H J, Bass H E 1972 J. Chem. Phys. 57 1763

    [33]

    Davison W D 1964 Proc. Roy. Soc. Ser. A 280 227

    [34]

    Montero S, Prez-Ros J 2014 J. Chem. Phys. 141 114301

    [35]

    Sears F W, Salinger G L 1976 Thermodynamics, Kinetic Theory and Statistical Thermodynamics (3rd Ed.) (Reading, Massachusetts: Addison_Wesley Pub. Co.) pp413-415

    [36]

    Li W 1989 Thermodynamics and Statistical Physics (Beijing: Beijing Institute of Technology Press) pp89- 120 (in Chinese) [李卫 1989 热力学与统计物理 (北京: 北京理工大学出版社) 第89120页]

    [37]

    Valley L M, Amme R C 1968 J. Acoust. Soc. Am. 44 1144

    [38]

    Minami Y, Yogi T, Sakai K 2009 J. Appl. Phys. 106 113519

    [39]

    Lambert J D 1977 Vibrational and Rotational Relaxation in Gases (Oxford: Clarendon) pp115-129

    [40]

    Herzfeld K F, Litovitz T H 1959 Absorption and Dispersion of Ultrasonic Waves (New York: Academic) pp338-343

    [41]

    Stewart E S, Stewart J L, Hubbard J C 1945 Phys. Rev. 68 231

    [42]

    Raff L M, Winter T G 1968 J. Chem. Phys. 48 3992

    [43]

    Bhatia A B 1985 Ultrasonic Absorption (New York: Dover) pp87-101

    [44]

    Warren P M 1964 Physical Acoustics: Principles and Methods (Vol. 2) (London: Academic Press) pp160-180

    [45]

    Wan J K S, Ioffe M S, Depew M C 1996 Sens. Actuators. B: Chem. 32 233

  • [1] 熊枫, 彭志敏, 丁艳军, 杜艳君. NO紫外宽带吸收光谱的非线性响应及实验. 物理学报, 2022, 71(20): 203302. doi: 10.7498/aps.71.20220975
    [2] 闻平. 玻璃形成体系中的β弛豫. 物理学报, 2017, 66(17): 176407. doi: 10.7498/aps.66.176407
    [3] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫. 物理学报, 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [4] 张克声, 陈刘奎, 欧卫华, 蒋学勤, 龙飞. 基于声吸收谱峰值点的天然气燃烧特性检测理论. 物理学报, 2015, 64(5): 054302. doi: 10.7498/aps.64.054302
    [5] 许雪梅, 李奔荣, 杨兵初, 蒋礼, 尹林子, 丁一鹏, 曹粲. 基于光声光谱技术的NO,NO2气体分析仪研究. 物理学报, 2013, 62(20): 200704. doi: 10.7498/aps.62.200704
    [6] 张克声, 王殊, 朱明, 胡轶, 贾雅琼. 混合气体声复合弛豫频谱的解析模型. 物理学报, 2012, 61(17): 174301. doi: 10.7498/aps.61.174301
    [7] 贾雅琼, 王殊, 朱明, 张克声, 袁飞阁. 气体声弛豫过程中有效比热容与弛豫时间的分解对应关系. 物理学报, 2012, 61(9): 095101. doi: 10.7498/aps.61.095101
    [8] 朱 明, 王 殊, 王菽韬, 夏东海. 基于混合气体分子复合弛豫模型的一氧化碳浓度检测算法. 物理学报, 2008, 57(9): 5749-5755. doi: 10.7498/aps.57.5749
    [9] 鄢 舒, 王 殊. 多原子分子气体中声波弛豫衰减谱的重建算法. 物理学报, 2008, 57(7): 4282-4291. doi: 10.7498/aps.57.4282
    [10] 田建辉, 韩 旭, 刘桂荣, 龙述尧, 秦金旗. SiC纳米杆的弛豫性能研究. 物理学报, 2007, 56(2): 643-648. doi: 10.7498/aps.56.643
    [11] 吴 羽, 焦中兴, 雷 亮, 文锦辉, 赖天树, 林位株. 半导体量子阱中电子自旋弛豫和动量弛豫. 物理学报, 2006, 55(6): 2961-2965. doi: 10.7498/aps.55.2961
    [12] 高文斌, R. DOPHEIDE, H. ZACHARIAS. Raman紫外双共振研究C2H2分子的碰撞转动弛豫. 物理学报, 1992, 41(3): 400-407. doi: 10.7498/aps.41.400
    [13] 李景德, 李家宝, 符史流, 沈文彬. 自由和随机介电弛豫. 物理学报, 1992, 41(1): 155-161. doi: 10.7498/aps.41.155
    [14] 张包铮, 李宇新, 林美荣, 陈文驹. 多声子无辐射弛豫速率的理论研究. 物理学报, 1990, 39(2): 261-269. doi: 10.7498/aps.39.261
    [15] 丁鄂江, 黄祖洽. 球对称无限空间中稀薄气体的一种弛豫. 物理学报, 1985, 34(3): 289-297. doi: 10.7498/aps.34.289
    [16] 夏建白. Si,GaAs(111)表面弛豫效应. 物理学报, 1984, 33(2): 143-153. doi: 10.7498/aps.33.143
    [17] 李景德. 热电弛豫效应. 物理学报, 1984, 33(11): 1563-1568. doi: 10.7498/aps.33.1563
    [18] 朱镛, 张道范. α-碘酸锂的电流弛豫和偏压场作用下表观介电常数弛豫行为. 物理学报, 1980, 29(4): 454-460. doi: 10.7498/aps.29.454
    [19] 张开明, 叶令. Si(111)表面原子弛豫研究. 物理学报, 1980, 29(1): 122-126. doi: 10.7498/aps.29.122
    [20] 马本堃. 自旋-晶格弛豫. 物理学报, 1965, 21(7): 1419-1436. doi: 10.7498/aps.21.1419
计量
  • 文章访问数:  6751
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-15
  • 修回日期:  2018-02-26
  • 刊出日期:  2018-05-05

/

返回文章
返回