搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气体声弛豫过程中有效比热容与弛豫时间的分解对应关系

贾雅琼 王殊 朱明 张克声 袁飞阁

引用本文:
Citation:

气体声弛豫过程中有效比热容与弛豫时间的分解对应关系

贾雅琼, 王殊, 朱明, 张克声, 袁飞阁

The analytic model between effective heat capacity and relaxation time in gas acoustic relaxation process

Jia Ya-Qiong, Wang Shu, Zhu Ming, Zhang Ke-Sheng, Yuan Fei-Ge
PDF
导出引用
  • 声在多原子分子气体中传播所引起的弛豫过程是探索气体特性的重要方面. 本文通过研究气体声弛豫过程中振动自由度与平动自由度(V-T)以及振动自由度之间(V-V)的分子能量转移模型, 给出了有效比热容与弛豫时间的分解对应关系及其通用获得方法. 该分解模型与现有的声弛豫模型相比, 反映了分解后的V-T 和V-V弛豫过程中振动比热容与弛豫时间的对应关系, 并发现了较高能级是引起对应声弛豫过程的决定因素. 将基于该分解模型获得的气体声弛豫衰减谱经碰撞直径微调改进后, 比现有理论更接近实验数据, 其结果证明了该分解对应关系的正确性和合理性.
    The acoustic relaxation is one important nature of gas, which is caused by the sound propagation in the polyatomic molecule gas. It is the basic relaxation process, which arises from the translational-vibrational degree of freedom (V-T) and the molecular energy transfer between different vibrational degrees of freedom (V-V) separately. By studying the molecule energy transition model of the basic acoustic relaxation processes of gas, we propose an analytic model reflecting the correspondence between effective specific heat capacity and relaxation time in this paper. Compared with the existing relaxation model, the analytic model provides the corresponding relationship between the vibrational specific heat capacity and the relaxation time in V-T and V-V. The solution procedure of the analytic model illustrates that the higher vibrational energy level is the determinant of the basic relaxation process. The effective heat capacity is the foundation of acoustic relaxation attenuation spectrum of gas. The relaxation attenuation spectra result from the analytic model in this paper, which is modified by fine-tuning the collision diameter of the gas molecule, are more consistent with the experiment data than with the existing theoretical value. It proves the correctness and validity of the analytic model.
    • 基金项目: 国家自然科学基金(批准号: 60971009, 61001011), 高等学校博士学科点专项科研基金(批准号: 20090142110019)和 湖北省自然科学基金(批准号: 2010CDB02701)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China(Grant Nos. 60971009, 61001011), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20090142110019), and the Hubei Natural Science Foundation(Grant No. 2010CDB02701).
    [1]

    Hanford A D, O'Connor P D, Anderson J B, Long L N 2008 J. Acoust. Soc. Am. 123 4118

    [2]

    Petculescu A G 2006 J. Optoelectron Adv. M. 8 217

    [3]

    Lambert J D 1977 Vibrational and Rotational Relaxation in Gases (Oxford: Clarendon) p17

    [4]

    Evans L B, Bass H E, Sutherland L C 1972 J. Acoust. Soc. Am. 51 1565

    [5]

    Bass H E, Baue H J, Evans L B 1972 J. Acoust. Soc. Am. 52 821

    [6]

    Phillips S, Dain Y, Lueptow R M 2003 J. Acoust. Soc. Am. 14 70

    [7]

    Dain Y, Lueptow R M 2001 J. Acoust. Soc. Am. 109 1955

    [8]

    Dain Y, Lueptow R M 2001 J. Acoust. Soc. Am. 110 2974

    [9]

    Bass H E, Chambers J P 2001 J. Acoust. Soc. Am. 109 3069

    [10]

    Sutherland L C, Bass H E 2004 J. Acoust. Soc. Am. 115 1012

    [11]

    Petculescu A G, Lueptow R M 2007 Acou. Today 3 17

    [12]

    Zhu M, Wang S, Wang S T, Xia D H 2008 Acta Phy. Sin 57 5749 (in Chinese) [朱明, 王殊, 王菽韬, 夏东海 2008 物理学报 57 5749]

    [13]

    Holman J P 1980 Thermodynamics (New York: McGraw-Hill) p324

    [14]

    Petculescu A G, Lueptow R M 2005 Phys. Rev. Lett. 94 238301

    [15]

    Yan S, Wang S 2008 Acta Phy. Sin. 57 4282 (in Chinese) [鄢舒, 王殊 2008 物理学报 57 4282]

    [16]

    Kinsler W E, Frey A R 1982 Fundamentals of Acoustics (New York: Wiley) p153

    [17]

    Petculescu A G, Lueptow R M 2005 J. Acoust. Soc. Am. 117 175

    [18]

    Herzfeld K F, Litovitz T H 1959 Absorption and dispersion of ultrasonic waves (New York: Academic) p58

    [19]

    Henderson M C, Klose J Z 1959 J. Acoust. Soc. Am. 31 29

    [20]

    Zuckerwar A J, Miller K W 1988 J. Acoust. Soc. Am. 84 970

    [21]

    Liu Z G, Zhang H, Li Y M 2004 Instrument Analysis (Dalian: Dalian University of Technology Press) p255 (in Chinese) [刘志广, 张华, 李亚明 2004 仪器分析 (大连:大连理工大学出版社) 第255页]

    [22]

    Petculescu A G, Hall B, Fraenzle R, Phillips S, Lueptow R M 2006 J. Acoust. Soc. Am. 120 1779

    [23]

    Tabor D 1979 Gases, liquids and solids(Great Britain: Cambridge University Press) p133

    [24]

    Ejakov S G, Phillips S, Dain Y, Lueptow R M, Visser J H 2003 J. Acoust. Soc. Am. 113 1871

  • [1]

    Hanford A D, O'Connor P D, Anderson J B, Long L N 2008 J. Acoust. Soc. Am. 123 4118

    [2]

    Petculescu A G 2006 J. Optoelectron Adv. M. 8 217

    [3]

    Lambert J D 1977 Vibrational and Rotational Relaxation in Gases (Oxford: Clarendon) p17

    [4]

    Evans L B, Bass H E, Sutherland L C 1972 J. Acoust. Soc. Am. 51 1565

    [5]

    Bass H E, Baue H J, Evans L B 1972 J. Acoust. Soc. Am. 52 821

    [6]

    Phillips S, Dain Y, Lueptow R M 2003 J. Acoust. Soc. Am. 14 70

    [7]

    Dain Y, Lueptow R M 2001 J. Acoust. Soc. Am. 109 1955

    [8]

    Dain Y, Lueptow R M 2001 J. Acoust. Soc. Am. 110 2974

    [9]

    Bass H E, Chambers J P 2001 J. Acoust. Soc. Am. 109 3069

    [10]

    Sutherland L C, Bass H E 2004 J. Acoust. Soc. Am. 115 1012

    [11]

    Petculescu A G, Lueptow R M 2007 Acou. Today 3 17

    [12]

    Zhu M, Wang S, Wang S T, Xia D H 2008 Acta Phy. Sin 57 5749 (in Chinese) [朱明, 王殊, 王菽韬, 夏东海 2008 物理学报 57 5749]

    [13]

    Holman J P 1980 Thermodynamics (New York: McGraw-Hill) p324

    [14]

    Petculescu A G, Lueptow R M 2005 Phys. Rev. Lett. 94 238301

    [15]

    Yan S, Wang S 2008 Acta Phy. Sin. 57 4282 (in Chinese) [鄢舒, 王殊 2008 物理学报 57 4282]

    [16]

    Kinsler W E, Frey A R 1982 Fundamentals of Acoustics (New York: Wiley) p153

    [17]

    Petculescu A G, Lueptow R M 2005 J. Acoust. Soc. Am. 117 175

    [18]

    Herzfeld K F, Litovitz T H 1959 Absorption and dispersion of ultrasonic waves (New York: Academic) p58

    [19]

    Henderson M C, Klose J Z 1959 J. Acoust. Soc. Am. 31 29

    [20]

    Zuckerwar A J, Miller K W 1988 J. Acoust. Soc. Am. 84 970

    [21]

    Liu Z G, Zhang H, Li Y M 2004 Instrument Analysis (Dalian: Dalian University of Technology Press) p255 (in Chinese) [刘志广, 张华, 李亚明 2004 仪器分析 (大连:大连理工大学出版社) 第255页]

    [22]

    Petculescu A G, Hall B, Fraenzle R, Phillips S, Lueptow R M 2006 J. Acoust. Soc. Am. 120 1779

    [23]

    Tabor D 1979 Gases, liquids and solids(Great Britain: Cambridge University Press) p133

    [24]

    Ejakov S G, Phillips S, Dain Y, Lueptow R M, Visser J H 2003 J. Acoust. Soc. Am. 113 1871

  • [1] 王鹏, 潘凤春, 郭晶晶, 李婷婷, 王旭明. 用双稳态势场模型研究观点转变的驱动-响应关系. 物理学报, 2020, 69(6): 060501. doi: 10.7498/aps.69.20191516
    [2] 汪杨, 赵伶玲. 单原子Lennard-Jones体黏弹性弛豫时间. 物理学报, 2020, 69(12): 123101. doi: 10.7498/aps.69.20200138
    [3] 陈燕红, 程锐, 张敏, 周贤明, 赵永涛, 王瑜玉, 雷瑜, 麻鹏鹏, 王昭, 任洁茹, 马新文, 肖国青. 利用质子能损检测气体靶区有效靶原子密度的实验研究. 物理学报, 2018, 67(4): 044101. doi: 10.7498/aps.67.20172028
    [4] 王文钊, 胡碧涛, 郑皓, 屠小青, 高朋林, 闫松, 郭文传, 闫海洋. 一种可用于极化3He实验的新型磁场系统. 物理学报, 2018, 67(17): 176701. doi: 10.7498/aps.67.20180571
    [5] 任晓霞, 申凤娟, 林歆悠, 郑瑞伦. 石墨烯低温热膨胀和声子弛豫时间随温度的变化规律. 物理学报, 2017, 66(22): 224701. doi: 10.7498/aps.66.224701
    [6] 蒋文灿, 陈华, 张伟斌. TATB晶体声子谱及比热容的第一性原理研究. 物理学报, 2016, 65(12): 126301. doi: 10.7498/aps.65.126301
    [7] 张克声, 朱明, 唐文勇, 欧卫华, 蒋学勤. 可激发气体振动弛豫时间的两频点声测量重建算法. 物理学报, 2016, 65(13): 134302. doi: 10.7498/aps.65.134302
    [8] 卞华栋, 戴晔, 叶俊毅, 宋娟, 阎晓娜, 马国宏. 紧聚焦飞秒脉冲与石英玻璃相互作用过程中的电子动量弛豫时间研究. 物理学报, 2014, 63(7): 074209. doi: 10.7498/aps.63.074209
    [9] 王兵, 吴秀清. 双色噪声驱动光学双稳系统的弛豫时间研究. 物理学报, 2011, 60(7): 074214. doi: 10.7498/aps.60.074214
    [10] 王安帮, 王云才, 郭文阁, 张首刚. 有效压缩增益开关DFB激光器光谱线宽的注入时间窗口. 物理学报, 2007, 56(1): 285-290. doi: 10.7498/aps.56.285
    [11] 赵建玉, 孙喜明, 贾 磊. 气体分子动力学交通流模型弛豫时间的改进. 物理学报, 2006, 55(5): 2306-2312. doi: 10.7498/aps.55.2306
    [12] 王 鹤, 李鲠颖. 反演与拟合相结合处理核磁共振弛豫数据的方法. 物理学报, 2005, 54(3): 1431-1436. doi: 10.7498/aps.54.1431
    [13] 马燕云, 常文蔚, 银 燕, 岳宗五, 曹莉华, 刘大庆. 等离子体粒子模拟中的一种碰撞模型. 物理学报, 2000, 49(8): 1513-1519. doi: 10.7498/aps.49.1513
    [14] 关立强, 王翠, 李贞姬, 金光星. s-f交换作用和电子交换作用对s电子比热容的影响. 物理学报, 1997, 46(8): 1598-1604. doi: 10.7498/aps.46.1598
    [15] 李健, 张立德, 王静. 用高斯分布法计算非晶态聚合物聚氯乙烯主转变过程中的动态力学弛豫时间谱分布. 物理学报, 1992, 41(5): 814-818. doi: 10.7498/aps.41.814
    [16] 杨继春, 吴钦义, 叶朝辉. AX体系多量子弛豫时间的直接探测. 物理学报, 1986, 35(1): 74-81. doi: 10.7498/aps.35.74
    [17] 霍裕平. 关联函数的长时间渐近行为——波对弛豫过程的影响. 物理学报, 1980, 29(1): 73-92. doi: 10.7498/aps.29.73
    [18] 李宏成. 有效声子谱对超导体临界温度的影响. 物理学报, 1979, 28(1): 104-116. doi: 10.7498/aps.28.104
    [19] 黄武汉, 楼祺洪. 红宝石中自旋-晶格弛豫时间与角度的关系. 物理学报, 1966, 22(1): 125-126. doi: 10.7498/aps.22.125
    [20] 施士元, 张国焕. 无序到有序恒温转变的弛豫时间. 物理学报, 1956, 12(1): 80-82. doi: 10.7498/aps.12.80
计量
  • 文章访问数:  4277
  • PDF下载量:  498
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-22
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

气体声弛豫过程中有效比热容与弛豫时间的分解对应关系

  • 1. 华中科技大学电子与信息工程系, 武汉 430074;
  • 2. 湖南工学院电气与信息工程系, 衡阳 421002
    基金项目: 国家自然科学基金(批准号: 60971009, 61001011), 高等学校博士学科点专项科研基金(批准号: 20090142110019)和 湖北省自然科学基金(批准号: 2010CDB02701)资助的课题.

摘要: 声在多原子分子气体中传播所引起的弛豫过程是探索气体特性的重要方面. 本文通过研究气体声弛豫过程中振动自由度与平动自由度(V-T)以及振动自由度之间(V-V)的分子能量转移模型, 给出了有效比热容与弛豫时间的分解对应关系及其通用获得方法. 该分解模型与现有的声弛豫模型相比, 反映了分解后的V-T 和V-V弛豫过程中振动比热容与弛豫时间的对应关系, 并发现了较高能级是引起对应声弛豫过程的决定因素. 将基于该分解模型获得的气体声弛豫衰减谱经碰撞直径微调改进后, 比现有理论更接近实验数据, 其结果证明了该分解对应关系的正确性和合理性.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回